
Midterm Exam Solutions
CS161 Computer Security, Spring 2008

1.

To encrypt a series of plaintext blocks p1, p2, . . . pn using a block cipher
E operating in electronic code book (ECB) mode, each ciphertext block
c1, c2, . . . cn is computed as ci = Ek(pi).

Which of the following is not a property of this block cipher mode?

(a) Any repeated plaintext blocks will result in identical corresponding
ciphertext blocks.

(b) Decryption can be fully parallelized.

(c) If a ciphertext block is modified or corrupted, then after decryption the
corresponding plaintext block and all the following plaintext blocks will
be affected.

(d) None of the above; that is, (a), (b), and (c) are all properties of the
ECB block cipher mode.

Answer: The correct answer is (c). In ECB, altering a ciphertext block
only affects a single plaintext block.

1

2.

To encrypt a series of plaintext blocks p1, p2, . . . pn using a block cipher
E operating in cipher block chaining (CBC) mode, each ciphertext block
c1, c2, . . . cn is computed as ci = Ek(pi ⊕ ci−1), where c0 is a public initializa-
tion vector (IV) which should be different for each encryption session.

Which of the following is a property of this block cipher mode?

(a) Any repeated plaintext blocks will result in identical corresponding
ciphertext blocks.

(b) Decryption can be fully parallelized.

(c) If a ciphertext block is modified or corrupted, then after decryption the
corresponding plaintext block and all the following plaintext blocks will
be affected.

(d) None of the above; that is, neither (a), (b), nor (c) are properties of
the CBC block cipher mode.

Answer: The correct answer is (b). Each plaintext block can be com-
puted using only two ciphertext blocks, independent of the other plaintext
blocks: pi = Dk(ci)⊕ ci−1.

Note that (c) is not a property of CBC. A modification to a ciphertext
block will affect that plaintext block and the one immediately following it,
but none after that.

3.

Consider a k-bit hash function h : {0, 1}∗ → {0, 1}k. Assume h operates
ideally in the sense that each distinct input to h is mapped to a random
member of {0, 1}k. Assume an attacker is trying to finding a collision of
h, that is, any two x1, x2 ∈ {0, 1}∗ such that h(x1) = h(x2). How does the
expected number of tries (evaluations of h) before the attacker succeeds grow
with respect to k?

(a) Ω(2k)

(b) Ω(2
√
k)

(c) Ω(2k/2)

(d) Ω(2log k)

Answer: The correct answer is (c), Ω(2k/2), i.e., Ω(
√

2k).

2

4.

The Diffie-Hellman protocol is used to generate a shared secret key between
two parties using a public channel. It proceeds as follows.

Let p be a large prime and g be a generator of Z∗p; both are
publicly known parameters. Alice selects a random a ∈ Zp and
sends x = ga mod p to Bob. Bob selects a random b ∈ Zp and
sends y = gb mod p to Alice. The shared key is gab mod p,
which Alice may compute as ya mod p and Bob may compute as
xb mod p. A message m ∈ Z∗p may be encrypted using this key
as c = m · gab mod p.

Which of the following public key encryption and digital signature schemes
is most similar to the Diffie-Hellman protocol?

(a) RSA encryption.

(b) RSA signatures.

(c) ElGamal encryption.

(d) ElGamal signatures.

Answer: The correct answer is (c). Diffie-Hellman and ElGamal encryp-
tion are exactly the same operations used in a somewhat different context.

More precisely, suppose Alice generates an ElGamal public key and sends
it to Bob, then Bob encrypts a message under that key and sends the ci-
phertext to Alice. Then Alice and Bob have computed and communicated
exactly the same values they would have if they performed a Diffie-Hellman
key exchange then sent the message using the shared key, as described above.

3

5.

Alice knows that she will want to send a single 128-bit message to Bob at
some point in the future. To prepare, Alice and Bob first select a 128-bit key
k ∈ {0, 1}128 uniformly at random.

When the time comes to send a message x ∈ {0, 1}128 to Bob, Alice
considers two ways of doing so. She can use the key as a one time pad,
sending Bob k⊕x. Alternatively, she can use AES to encrypt x. Recall that
AES is a 128-bit block cipher which can use a 128-bit key, so in this case she
would encrypt x as a single block and send Bob AESk(x).

Assume Eve will see either k ⊕ x or AESk(x), that Eve knows an initial
portion of x (a standard header), and that she wishes to recover the remaining
portion of x.

If Eve is an all powerful adversary and has time to try out every possible
key k ∈ {0, 1}128, which scheme would be more secure?

(a) The one time pad would be more secure. Even if Eve tried all possible
keys, she would not be able to recover the unknown portion of x. If
AES was used, Eve could eventually learn the unknown portion of x.

(b) AES would be more secure. Even if Eve tried all possible keys, she
would not be able to recover the unknown portion of x. If the one time
pad was used, Eve could eventually learn the unknown portion of x.

(c) They would be equally secure. Either way, Eve could eventually learn
the unknown portion of x.

(d) They would be equally secure. Either way, Eve would not be able to
learn the unknown portion of x.

Answer: The correct answer is (d). Even after trying every possible key
(including the actual one), Eve will have no way of recognizing the correct
plaintext or even narrowing down the possibilities in any way.

Why is this? Well, since AES is a distinct permutation on {0, 1}128 under
each possible key, and the key was selected uniformly at random, given any
plaintext, each possible ciphertext is equally likely. So when AES is used for
a single block with a random key of the same length, the effect is exactly the
same as using a one time pad: the ciphertext reveals no information about
the plaintext.

4

6.

Message authentication codes (MAC) and digital signatures both serve to
authenticate the content of a message. Which of the following best describes
how they differ?

(a) A MAC can be verified based only on the message, but a digital signa-
ture can only be verified with the secret key used to sign the message.

(b) A MAC can be verified based only on the message, but a digital signa-
ture can only be verified with the public key of the party that signed
the message.

(c) A MAC can only be verified with the secret key used to generate it,
but a digital signature can be verified based only on the message.

(d) A MAC can only be verified with the secret key used to generate it,
but a digital signature can be verified with the public key of the party
that signed the message.

Answer: The correct answer is (d).

5

7.

Let p be a large prime and g be a generator of Z∗p.
The discrete logarithm problem is the task of computing a given ga mod p,

where a is an exponent randomly selected from Zp.
The computational Diffie-Hellman problem is the task of computing gab

mod p given ga mod p and gb mod p, where a and b are exponents randomly
selected from Zp.

Which of the following best describes the relationship between these prob-
lems?

(a) They are equivalent; if either can be efficiently solved, the other can.

(b) If the computational Diffie-Hellman problem can be efficiently solved
then the discrete logarithm problem can be efficiently solved, but the
converse is not known to be true.

(c) If the discrete logarithm problem can be efficiently solved then the
computational Diffie-Hellman problem can be efficiently solved, but
the converse is not known to be true.

(d) None of the above.

Answer: The correct answer is (c). To show that the computational
Diffie-Hellman problem reduces to the discrete logarithm problem, imagine
you have an algorithm to efficiently compute discrete logs and you are given
the task of solving the Diffie-Hellman problem. Then you could easily com-
pute a from ga mod p and then compute (gb)a mod p = gab mod p. No
reduction in the other direction is known.

6

8.

Let p be a large prime and g be a generator of Z∗p.
Suppose we are considering the function h : Z → Z∗p for use as a hash

function, where h(m) = gm mod p.
Four basic properties are typically desired of cryptographic hash func-

tions. The compression property requires that messages of any length be
hashed to a finite domain. The preimage resistance (a.k.a. one-way) prop-
erty requires that it be hard to find a message that hashes to a particular
value. The second preimage resistance (a.k.a. weak collision resistance)
property requires that, given one message, it is hard to find a second mes-
sage with the same hash as the first message. The collision resistance (a.k.a.
strong collision resistance) property requires that it be hard to find any two
messages with the same hash.

Since we treat messages as arbitrary integers (not just members of Z∗p),
h satisfies the compression property.

If we assume the difficulty of the discrete logarithm problem in Z∗p, which
of the other three properties does h satisfy?

(a) All of them: preimage resistance, second preimage resistance, and col-
lision resistance.

(b) Only preimage resistance and second preimage resistance.

(c) Only preimage resistance.

(d) None of them.

Answer: The correct answer is (c).
It can be shown that h satisfies preimage resistance with a reduction

from the discrete logarithm problem. The reduction is trivial in that they
are almost exactly the same problem. If you have an algorithm which can
produce preimages, you need only reduce them modulo p to produce the
correct answer for the discrete logarithm problem.

To see that it is not second preimage resistant, note that for any message
m, the message m+p−1 will hash to the same value (and m+ 2(p−1),m+
3(p − 1), . . .). And if it is not second preimage resistant, there is no way it
can be collision resistant, because that is a strictly stronger condition.

7

9.

The following protocol is used to establish a shared key Kab between two
parties A and B, assuming A and B each share a key with a mutually trusted
server S. 1. A→ S : na, A,B

2. S → B : EKas(na, A,B,Kab), EKbs
(na, A,B,Kab)

3. B → A : EKas(na, A,B,Kab), EKab
(na), nb

4. A→ B : EKab
(nb)

The values na and nb are nonces selected by A and B. Like the Needham
Schroeder protocol, this protocol is vulnerable to a key freshness attack.

More specifically, assume an eavesdropper records the messages above in
one execution of the protocol, then at some later point manages to compro-
mise the session key Kab. With this information, an active adversary can
then trick B into reusing Kab in a session with the attacker. B will mistak-
enly believe it is communicating with A and that Kab is a fresh key generated
for the two of them by S.

Show how this may be done.
Assume the adversary can arbitrarily intercept messages and drop or

modify them before the intended recipient sees them. The adversary can
also send new or replayed messages to any party, making them appear to
come from any other party. However, the adversary has not compromised
either of the long-lived keys (Kas and Kbs).

Answer: The following is the most straightforward way of accomplish-
ing this attack. Assume the adversary has already observed one run of the
protocol and subsequently compromised Kab somehow.

The adversary replays message 2 to B, making it appear to come from
S. B (who maintains no state between executions of the protocol, as was
clarified during the exam) thinks that A is once again trying to initiate a
session with it and that S has generated Kab for them.

B then sends a new message 3 to A; it differs from the previous message
3 only in B’s choice of nonce: EKas(na, A,B,Kab), EKab

(na), n
′
b.

The adversary intercepts this message before it reaches A and replies
to B with a message EKab

(n′b), making it appear to come from A. Note
that the adversary can compute EKab

(n′b) because it has Kab and has just
observed n′b. Now the adversary and B can continue communicating, and B
will mistakenly believe it has a secure session with A.

8

10.

An n out of n secret sharing scheme is a randomized algorithm which takes a
secret string x and produces n shares s1, s2, . . . sn. The shares must have the
property that any set of n− 1 or fewer shares reveals no information about
x, but all n shares completely determine x.

Show how to construct an n out of n secret sharing scheme for an `-bit
secret x ∈ {0, 1}` using the exclusive or (⊕) function. Your answer should
specify any random values selected and show how to compute each of the
shares s1, s2, . . . sn based on those values and x.

Answer: The most straightforward solution is the following. Pick n− 1
random, `-bit values r1, r2, . . . rn−1 ∈ {0, 1}`. Then set

s1 = r1

s2 = r2
...

sn−1 = rn−1

sn = x⊕ r1 ⊕ r2 ⊕ · · · rn−1

Note that the secret can be reconstructed as s1 ⊕ s2 ⊕ · · · sn = x.

11.

A program running on Alice’s system occasionally needs to pick a random
AES key. After reading through the source code for the program, Alice
discovered that it does so by calling srand to seed the pseudorandom num-
ber generator with a combination of the current time and process ID, then
repeatedly calling rand to generate the bytes of the key.

Alice has heard that this is a very insecure method of selecting a random
symmetric key due to the predictability of process ID’s and the current time
and the flaws of most rand implementations. To remedy this situation, Alice
sets her computer’s clock to a random time and configures her kernel so that
process ID’s are selected randomly rather than sequentially. Furthermore,
she replaces the calls to srand / rand with a SHA-1 hash, truncating the
output down to a 128-bit AES key.

The relevant portion of the new source code (which is in C) is given below:

9

int x;
char buf[20];

/* set x to current time (in seconds since the epoch) */
x = time(0);

/* xor in the process ID for more randomness */
x = x ^ getpid();

/* hash x with SHA-1 and put the result in buf */
sha1(buf, &x, 4);

/* now we will use the first 16 bytes of buf as a 128-bit AES key */

In this code, sha1(char* out, char* in, int k) is a function that com-
putes the 160-bit SHA-1 hash of a k-byte message starting at address in and
places the result at address out.

Are Alice’s changes sufficient? If you think the new system is reasonably
secure, explain why. If you think it is insecure, state how you would go about
breaking it.

Answer: Alice’s changes are in no way sufficient to secure the system;
anything encrypted with a key selected in this way can be decrypted in a
matter of minutes.

This is because the SHA-1 hash is computed over only four bytes, resulting
in only about four billion possible keys. The most straightforward way to
attack this system is to try each of the 232 possible values for x in turn, each
time using SHA-1 to hash x then attempting decryption with that key.

This is possible regardless of how Alice has set her computer’s clock or
how it chooses process ID’s. If an attacker can somehow derive or narrow
down the possible settings for Alice’s clock (e.g., using a separate protocol
from the one being attacked), they could speed up the attack somewhat,
but it may not be worth bothering since the set of possible keys is so small
already.

10

12.

Suppose we have an undirected graph G = (N,E), where N is a set of nodes
and we represent the edges as a subset E of N ×N . Since G is undirected,
E is a symmetric relation on N . A 3-coloring of G is a mapping

f : N → {“red”, “green”, “blue”}

such that
(n1, n2) ∈ E =⇒ f(n1) 6= f(n2) .

Merlin claims to know of a 3-coloring f of G and wants to prove this in
zero-knowledge to Arthur (who also has G). Like many other zero-knowledge
proofs about graph properties, the protocol they use will take the following
general form.

Phase 1 Merlin commits to some information about G and / or his coloring
f .

Phase 2 Arthur sends him a random challenge.

Phase 3 Merlin responds, and Arthur checks some property of the response
and that it matches the previous commitments, then either accepts or
rejects.

The protocol must have the following properties:

Completeness If Merlin is being honest (i.e., he does have such a 3-coloring
f) and both he and Arthur follow the protocol, Arthur will always
accept.

Soundness If the claim Merlin is making is impossible (i.e., there is no 3-
coloring of G), then no matter what Merlin does, if Arthur follows the
protocol he will reject with some probability.

Zero-knowledge If Merlin follows the protocol, then no matter what Arthur
does, Arthur will not learn anything about Merlin’s solution (f).

Efficiency All computations required of Arthur are polynomial time.

11

For this problem, we modify the soundness requirement slightly to allow
the probability of Arthur rejecting (in the case that no 3-coloring exists) to
depend on the size of the graph G. So, for example, if the protocol ensures
Arthur rejects with probability 1

|N | or 1
|E| , then that is acceptable. Arthur

can always repeat the protocol more times for larger graphs to get more
assurance.

Design a suitable protocol for this problem by filling in the template on
the following page.

Try to specify your protocol concretely without becoming bogged down in
the notation and details. If it’s clear that you have a correct solution in mind,
you won’t be penalized for minor mistakes or edge cases. Don’t worry about
how commitments are implemented; you just can denote a commitment to a
string or value s by c(s).

Hints: This problem is much simpler than the “edge flagging” (a.k.a.
vertex cover) zero-knowledge graph problem on the second homework. In
particular, it’s not necessary to permute the names of the nodes of G and
make a permuted adjacency matrix. The simplest solution will only take a
few lines to specify. When considering the challenge that Arthur will pose
in Phase 2, keep in mind the property that a valid 3-coloring must satisfy:
given any edge, the colors of the nodes at either end must differ.

Answer: In a couple pages we give the simplest, most straightforward
solution, but first we go over some general commentary on this solution and
other possible attempts.

In short, the given solution has Merlin randomly permute his coloring,
then commit to the color of each node. Arthur challenges Merlin with a
particular edge, Merlin reveals the colors of those two nodes, and Arthur
checks that they differ. By inspection, we can see that this protocol satisfies
our completeness and efficiency requirements.

To see that it is sound, suppose the graph cannot be three colored. Then
there is at least one edge such that both nodes have the same color, and
Merlin has at least a 1

|E| chance of getting caught.
To see that it is zero-knowledge, note that the only information Merlin

reveals (other than commitments which are not later opened) is the color of
each of two nodes connected by an edge. Call these colors x and y. Since
Merlin first applied a random permutation to the colors, x is equally likely
to be red, green, or blue, and y is equally likely to be either of the two
colors x is not. Arthur could have generated random values x and y with the

12

same distribution on his own, so his interaction with Merlin does not reveal
anything new.

A great many students attempted to solve this problem by having Merlin
first permute the names of the nodes, but not the colors. Unfortunately, this
almost always results in a protocol which is not zero-knowledge.

To understand why, let us consider one such protocol. As the first step,
Merlin randomly selects a permutation π : N → N . Then for each edge ei ∈
E, Merlin commits to the names and colors of the nodes: ci1 = c(n, n′), ci2 =
c(f(n), f(n′)), where ei = (n, n′). He also commits to the permutation cπ =
c(π). Then Arthur may challenge him to either open cπ and all the name
commitments ci1 (in which case he checks that they match the graph), or the
color commitment for one edge (in which case he checks that they differ).1

The latter possibility is what gradually leaks information to Arthur.
Suppose Arthur repeats this protocol a large number of times, obtaining

t responses to the second type of challenge. If Arthur totals the number of
times he sees each color mentioned as r, g, and b, then he can use those
numbers to compute something about the overall coloring. Specifically, as
t grows larger, r·|E|

t
tends toward the sum of the degrees of the red nodes.

This sum and the corresponding sums for blue and green may not be useful
for some graphs. For other graphs however, Arthur may be able to easily
narrow down the possibilities for the color of each of the original nodes and
compute the solution. Note that it is not enough to simply hide the coloring
of some graphs; in order for the protocol to be considered zero-knowledge, it
must not reveal any information at all, no matter which graph it is used on.

This is just one way of showing this type of protocol leaks information;
there may be other approaches to breaking it. Now, on the following page,
we give a correct protocol (which is also much simpler than the incorrect one
above).

1As it stands this protocol also has a problem with soundness. We ignore that here
because it can be fixed by adding some more commitments and because we are trying to
see why it is not zero-knowledge.

13

• Phase 1. Your answer for this part should first specify any random
values Merlin selects and any other computations he performs. Next
it should give a list of one or more commitments c1 = c(s1), c2 =
c(s2), . . . c` = c(s`) he forms and sends to Arthur.

Answer: Let N = {n1, n2, . . . n|N |}. First Merlin selects a random
permutation of the three colors π : {“red”, “green”, “blue”} → {“red”, “green”, “blue”}.
Then for each i ∈ {1, 2, . . . |N |}, Merlin computes si = π(f(ni)) and
sends the commitment ci = c(si) to Arthur.

• Phase 2. For this part, specify the set from which Arthur selects a
random challenge to be sent to Merlin. Example sets from which to
draw the challenge include {0, 1} (a single coin flip), E (an edge), N×N
(a pair of nodes), etc.

Answer: Arthur challenges Merlin with an edge (ni, nj) ∈ E.

• Phase 3. For this part, first specify one or more of the original com-
mitments c1, c2, . . . c` which Merlin opens in response to the challenge.
Assume “opening” a commitment means that both the value commit-
ted to and the randomness used in forming the commitment are sent
to Arthur, and that Arthur checks that they match the corresponding
commitment from Phase 1. Next specify any additional checks Arthur
performs on the values revealed.

Answer: In response to the challenge (ni, nj) ∈ E, Merlin opens the
two commitments ci and cj, revealing si = π(f(ni)) and sj = π(f(nj))
(and the corresponding randomness). Arthur checks that these values
match the commitments ci and cj and that si 6= sj.

14

