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Problem 1: Memory Hierarchy
Problem 1a:
Below is a series of memory read references set to a cache.  The cache holds 128 bytes total. It
has 2-word blocks (i.e. 64bits), is 2-way set associative, and uses a least-recently-used
replacement policy.  Assume that the cache is initially empty.

Classify each memory references as a hit or a miss.  Identify each cache miss as either
compulsory, conflict, or capacity.  One example is shown below.  Feel free to use space in the
margin  as scratch.

Bit Pattern Address Hit/Miss? Miss Type?
00 000 111 0x7 Miss Compulsory

01 001 101 0x4D Miss Compulsory

00 101 010 0x2A Miss Compulsory

01 111 001 0x79 Miss Compulsory

10 101 011 0xAB Miss Compulsory

11 001 110 0xCE Miss Compulsory

00 101 110 0x2E Hit N/A

01 001 011 0x4B Hit N/A

01 101 101 0x6D Miss Compulsory

10 001 010 0x8A Miss Compulsory

10 101 111 0xAF Miss Conflict

00 101 001 0x29 Miss Conflict

11 001 000 0xC8 Miss Conflict

11 001 110 0xCE Hit N/A

01 101 010 0x6A Miss Conflict

Tag
index

Offset
(ignore)

Ans: The trick with this type of cache simulation is the split the address into bit fields.  Each
cache block is 8 bytes⇒offset is 3 bits.  This is the lowest 3 bits of the address, and should be
completely ignored.   The total blocks in the cache is 128 bytes/8 bytes=16 blocks.  Since the
cache is 2-way set associative, this means that the cache index selects among 16/2 = 8 blocks.
So,  index is 3 bits.  Finally, the remaining two bits at the top are tag bits.

Problem 1b:
Calculate the miss rate and hit rate.
Miss Rate = 12/15 = 80%
Hit Rate = 3/15 = 20%
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Problem 1c:
Suppose you have a 32-bit processor, with a virtual-memory page-size of 16K.  The data cache is
32K in size with 32-byte cache blocks.  Finally, your TLB has 4 entries.  Assume that you wish
to do TLB lookups in parallel with cache lookups.

Draw a block diagram of the data cache and TLB organization, showing a virtual address as
input and both a physical address and data as output.  Include cache hit and TLB hit output
signals.  Include as much information about the internals of the TLB and cache organization as
possible.  Include, among other things, all of the comparators in the system and any muxes as
well.  You can indicate RAM as with a simple block, but make sure to label address widths and
data widths. Make sure to use abstraction in your diagram so that we can understand it.  Label
the function of various blocks and the width of any buses.

Answer: The key observation is that, in order to do parallel access to TLB and cache data, you
need to keep the cache index+offset ≤ page size (in bits).  So, this means that we need 32K/16K
sets (i.e. 2-way set associative).  This is enough to draw our diagram:

Cache Data
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Now, assume the following instruction mix:
Loads: 20%, Stores: 15%, Integer: 29%, Floating-Point: 16% Branches: 20%

Assume that you have a memory-hierarchy consisting of 2-levels of cache, 1 level of DRAM,
and a DISK.  The following parameters are appropriate.  Assume a 200MHz processor:

Component Hit Time Miss Rate Block Size
First-Level

Cache
1 cycle

5% Data
1% Instructions

32 bytes

Second-Level
Cache

10 cycles +
1 cycle/64bits

3% 128 bytes

DRAM
100ns+

25ns/8 bytes
1% 16K bytes

DISK
50ms +

20ns/byte
0% 16K bytes

In addition, assume that there is a TLB which misses 0.1% of the time on data (doesn’t miss on
instructions) and which has a fill penalty of 50 cycles.

Problem 1d:
What is the average memory access time for Instructions?  For Data?

AMAT = HTL1 + MRL1*AMATL2 + MRTLB*MPTLB

AMATL2 = HTL2 + MRL2*AMATRAM

AMATRAM = HTRAM + MRRAM*AMATDISK

HTL2 = 10 cycles + 1 cycle/64bits * 32 * 8 bits = 14 cycles
HTRAM = 100ns + 25ns/8bytes * 128 bytes = 500ns = 100 cycles
HTDISK = 50ms + 20ns/byte * 16Kbytes = 50.32768ms = 10.065536*106 cycles

AMATL2 = 3036.66 cycles
AMATinst = 31.36 cycles
AMATdata = 152.88 cycles

Note: HT = hit time
MR = miss rate
MP = miss penalty
AMAT = Average Memory Access Time
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Problem 2: Multicycle Polynomial Multiply
The VAX architecture from Digital Equipment Corporation was well known for its complex
instruction set.  One instruction that was often cited was the polynomial multiply instruction.
This instruction took two polynomials and multiplied them together to get a third:

( ) ( ) ( )812427724223 24567452 ++++++⇒++×++ XXXXXXXXXX

Let’s represent polynomials as pointers to arrays of numbers in memory.  The first number will
be the “degree” of the polynomial (highest power of X).  The following (degree+1) values will
be the coefficients of the powers of X, starting with the lowest power.  For example:

( ) ( ) [ ]210004521000442 54321045 ⇒+++++=++ XXXXXXXX

The first number (5) is the degree.  The next 6 numbers are coefficients.  Thus, a 5th degree
polynomial is represented by 7 numbers in memory.

With that representation, a polynomial multiplication can be described with the following
straightforward pseudo-code, where poly1 – poly3 are pointers to 32-bit words in memory:

polynomial_mult(poly1,poly2) ⇒ poly3
{

degree1 = poly1[0];          /* Degree of poly1 */
degree2 = poly2[0];          /* Degree of poly2 */
degree3 = degree1 + degree2; /* Compute degree of poly3 */
poly3[0]=degree3;            /* Save into result */

for (resultdeg = 0; resultdeg ≤ degree3; resultdeg++) {
indexdeg1 = MIN(resultdeg,degree1);
indexdeg2 = resultdeg – indexdeg1;

/* (indexdeg1+indexdeg2)=resultdeg throughout loop */
accum = 0;
while ((indexdeg1 ≥ 0) and (indexdeg2 ≤ degree2)) {

accum = accum + poly1[indexdeg1+1] × poly2[indexdeg2+1];
indexdeg1--;  /* Decrement */
indexdeg2++; /* Increment */

}
poly3[resultdeg+1] = accum; /* Place final coeff into poly3 */

}
}

Note: In reading this code, assume that the polynomial coefficients are 32-bit values.  This
means that you must scale indexes by 4 before using them, i.e.  poly1[6] is at address poly+6x4!

The way that this algorithm works is that the “for” loop generates each coefficient of the result,
starting with the lowest. The inner “while” loop adds up all terms in the product that are of the
same degree. To see this, consider the 7X5 term of the result in the example above:

( ) ( ) ( ) 550432 722301 XXXXXXX =×+×+×   or  ( ) ( ) ( ) 7221301 =×+×+×

When computing this term, resultdeg=5. Before the “while” loop, indexdeg1 starts at
MIN(5,2)=2 and indexdeg2 starts at 5-2=3. Throughout the “while” loop, the sum
(indexdeg1+indexdeg2) = 5.
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Figure 1: The Multicycle Data Path
Problem 2a:
Let the ALU support multiplication.  You cannot change or duplicate the memory component, or
change or duplicate the ALU component, but are allowed to add muxes, registers, equality
comparitors, and random logic.  Estimate the minimum number of cycles (on average) that you
can hope to achieve in the inner “while” loop.  Justify your answer by discussing the operations
that must be performed on each iteration and showing a timing diagram for three iterations of the
inner loop.  Don’t try to change the datapath yet.  You will do that in (2b)

Problem 2 has many possible solutions.  We will discuss some of them here.  For
2b onwards, we will illustrate one possible solution.

Answer (#1): Without migrating computation out of the inner loop, there are 7 cycles of
operations, since each address takes 2 cycles to compute (not forgetting to add the base, e.g.
poly1!!!), and there is a multiply, add, and one decrement.  Note that we moved the incrementing
of indexdeg2 before the memory operations, since this takes care of the +1 part of the address
computation.  We must be careful to overlap memory operations, or we will have to take more
cycles.  Here is one iteration of the loop; the arrows show address computations:

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7
indexdeg1

+1
poly1+

indexdeg1<<2
indexdeg2

++
poly2+

indexdeg2<<2
indexdeg1

--
multiply add

poly1[] poly2[]

Note that we must check the condition for the while in Cycle 1,2, or 3, since indexdeg2 has
changed by cycle 3.
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Answer(#2): Let’s move the “+1” functionality out of the inner loop. We can hope for a 6-cycle
inner loop.  Here is one “cycle” of the loop, assuming that we have incremented poly1 and poly2
by one element (i.e. by 4) outside the inner loop:

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
poly1+

indexdeg1<<2
poly2+

indexdeg2<<2
indexdeg1-- indexdeg2++ multiply add

poly1[] poly2[]

Answer(#3): Alternatively, we could increment indexdeg1 outside the loop and leave poly1 and poly2
alone.  Then, by creative incrementing and decrementing,we can avoid the extra +1 computation.  This
means that we need to check for the boundary condition “indexdeg2 ≤ degree2” before cycle 3 (when
indexdeg2 changes) and check for the boundary condition “indexdeg1 ≥ 1” before cycle 5 or check
indexdeg1≥ 0 on cycle 5 or 6:

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
poly1+

indexdeg1<<2
indexdeg2++

poly2+
indexdeg2<<2

indexdeg1-- multiply add

poly1[] poly2[]

Answer(#4): Finally, if we are really clever, we could reduce this down to 4 cycles by using pointers that
have the base values already added in.  In the following, assume that: “point1 = poly1 +
indexdeg1<<2” and that “point2=poly2+indexdeg2<<2”.  Also assume that we indexdeg1 is ahead by 1
(i.e. point1 is ahead by 4) at the beginning of the loop.  Then, in cycle 1 we check the boundary condition
“point2≤ poly2+degree2<<4” and in cycle 3 or 4 we check the boundary condition “point1≥ poly1”:

Cycle 1 Cycle 2 Cycle 3 Cycle 4

point2+=4 point1-=4 multiply add

point1[] point2[]

Cond2 check Cond1 check

Just to make clear what we have done, here would be modified code to reflect the last option:

point1 = poly1 + indexdeg1<<4 + 4;
point2 = poly2 + indexdeg2<<4;

/* (indexdeg1+indexdeg2)=resultdeg throughout loop */
accum = 0;
do {

cond2 = (point2 == poly2);  /* Save this on cycle 1 */
point2 = point2 + 4;
/* THE “*” means to find value pointer*/
accum = accum + (*point1) ×(*point2);
point1 = point1 – 4;
cond1 = (point1 == poly1+degree2<<4)

} until (cond1 or cond2);

Registers needed for this code: point1, point2, poly2, (poly1+degree2<<4), accum, cond2; Note
also that we will multiply everything by 4 to make this work as well.
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Problem 2b:
Assume that our new instruction is specified as follows:

polymult $r3, $r1, $r2

Where this is an R-TYPE instruction.  Here, registers r1 and r2 hold pointers to the source polynomials,
and  r3 holds a pointer to memory for the destination polynomial.  Let’s assume that there is enough
memory at the location specified by r3 to hold any result. Assume also that the registers should not be
changed during execution.

Change the data path to support polynomial multiply with the same rate in the inner loop as specified in
(2a)? As before, you cannot change or duplicate the memory component, or change or duplicate the ALU
component, but are allowed to add muxes, registers, equality comparitors, and random logic.  Be explicit
and try to be minimize the hardware/minimize the total number of cycles for the complete operation as
much as possible. Show all new control points. (Note: the computation of initial values of indexdeg1 and
indexdeg2 can be done with one ALU operation and some muxes!)

Answer: Although the last option from the previous problem can be made to use the least additional
hardware, it can be the hardest to understand. Instead, lets use the somewhat less optimal option #3
above.  Further, lets take the outer “for” loop backwards, i.e. starting with resultdeg=degree3.  This will
eliminate the need for one more register, since we can decrement resultdeg and look for zero, rather than
keeping degree3 around.  So, new registers:

indexdeg1, indexdeg2, resultdeg, degree1, degree2, poly3, accum

All of the new registers must be muxed into the ALU as inputs.  Further, they should be able to latch their
values from output of the ALU.  Also, the ALUOUT register should be fed back into the ALU as an input.

Note that poly1 and poly2 are always available in registers A and B, since they are continually fetched
from the register file.   So, since indexdeg1 must be added to poly1 (in reg A), indexdeg1 needs to go to
the B input of the ALU.  etc.

Other changes that are needed: we need to add a mux in front of the “RA” input of the register file so
that we can read register RD once (to get poly3).  Note that we assume that the “A” register of the ALU
is always writing unless we assert “InitPoly3”, in which case it holds its value.

Further, the value written to memory must be able to come from either the B register (for normal “store”
instructions) or from the accum register (at the end of the inner loop).  The address to memory should be
able to come from either ALUOUT (as now) or from poly3 (when updating the polynomial). Finally, we
need to add an extra register from data output and put enables on both registers; both of these registers
(call them MemDataReg1 and MemDataReg2) need to be inputs to the ALU.  To deal with the fact that
we need to multiply indices by 4 on the way in, we will support x4 functionality on these registers as well
(denoted by “<<2”).

As far as conditionals are concerned, the “neg” output of the ALU will be tied into “cond3”, the
boundary condition (indexdeg1≠ 4 and indexdeg2≠ degree2) will be tied into “cond1” and the condition
(resultdeg ≠ 0) will be tied into cond2. Both cond1 and cond2 are written in such a way as to indicate that
the loop is not yet done (i..e we should continue with the loop).
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Figure 2a: Additions to the ALU path for polynomial multiply.  Note that the ALU input
muxes in this figure only include new inputs.  Assume that the other inputs are still there.

Figure 2b: Additions to the RegFile
control to support polynomial
multiply.  The primary change is the
addition of an extra address MUX to
give us access to register RD.  Also,
added enable to A register.

Figure 2c: Additions to the Memory
component to support  polynomial multiply.
Note that we have two new muxes to support
writes of the accumulated value into Poly3.
Also, we have added a temporary memory
register.
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Table 1: Symbolic Definitions for Microcode

Field Name               Values for Field          Function of Field with Specific Value
ALU Add ALU adds

Subt. ALU subtracts
Func code ALU does function code
Or ALU does logical OR

SRC1 PC 1st ALU input = PC
rs 1st ALU input = Reg[rs]

SRC2 4 2nd ALU input = 4
Extend 2nd ALU input = sign ext. IR[15-0]
Extend0 2nd ALU input = zero ext. IR[15-0]
Extshft 2nd ALU input = sign ex., sl IR[15-0]
rt 2nd ALU input = Reg[rt]

destination rd ALU Reg[rd] = ALUout
rt ALU Reg[rt] = ALUout

 rt Mem Reg[rt] = Mem
Memory Read PC Read memory using PC

Read ALU Read memory using ALU output
Write ALU Write memory using ALU output

Memory register IR IR = Mem
PC write ALU PC = ALU

ALUoutCond IF ALU Zero then PC = ALUout
Sequencing Seq Go to sequential µinstruction

Fetch Go to the first microinstruction
Dispatch Dispatch using ROM.

Table 2: Microcode for Simple Instructions

Label      ALU    SRC1    SRC2       Dest.       Memory      Mem. Reg.      PC Write      Sequence
Fetch: Add PC 4  Read PC IR ALU SEQ

Add PC Extshft     Dispatch

Rtype: Func rs rt     Seq
   rd ALU    Fetch

Ori: Or rs Extend0     Seq
    rt ALU    Fetch

Lw: Add rs Extend     Seq
 Read ALU Seq
    rt MEM    Fetch

Sw: Add rs Extend     Seq
    WriteALU   Fetch

Beq: Subt rs rt     Fetch
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Assume that we are going to microcode this instruction.  For your reference, Tables 1 and 2 list
the symbolic names that we have given to fields of the microinstructions, as well as the
microcoded versions of  some of the simple instructions.

Problem 2c:
First, how does the sequencer box have to change in order to support this instruction?  Draw a
block diagram showing the MicroPC, the logic around it, and the ROM.

Answer: The sequencer needs to have the
ability to branch.  The version shown
here includes a “branch always” option,
to permit jumping.  It also includes two
conditions (see input mux in lower right
corner of diagram).

Answers which permitted some form of
branching (and which included an
acknowledgment that there are two
conditions of interest got most credit.

Problem 2d:
Next, make changes to Table 1 to reflect your new hardware.  Make sure that you are clear about
what you are adding/changing.

Additions to SRC1:
MemData1
MemData1<<2
ALUout
indexdeg1
indexdeg2
degree2
resultdeg
poly3
0
4
poly1 (same as “rs”)

Additions to Dest:
InitPoly3
LatchCond1

Additions to SRC2:
MemData2
MemData2<<2
ALUout
indexdeg1
degree1
accum
0
poly2 (same as “rt”)

Additions to Sequence:
jump  offset
bneg offset
bfor offset
bwhile offset

ALULatch:
indexdeg1
indexdeg2
resultdeg
degree1
degree2
poly3
accum

Additions to
Memory:
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Problem 2e:
Finally, write microcode for the polynomial multiply instruction.  (You are now an official CISC
system designer!).

Note that we ended up calling this part of the problem “extra credit” and gave a few extra points
to people who had started down the path.

Label        ALU          SRC1              SRC2        ALULatch    Dest.      Memory    Mem. Reg.    PC Write    Seq
/***** Fetch address of destination polynomial and put in register poly3 */
polymult:     InitPoly3    Seq

/***** Fetch  poly1[0] and poly2[0] */
Add poly1 0      Seq
Add 0 poly2   rd ALU MemData1  Seq
     rd ALU MemData2  Seq

/***** Compute poly3[0] and initialize degree1 & degree2 with 4 * degree values */
Add MemData1 MemData2      Seq
Add MemData1<<2 0 degree1  wr Poly3   Seq
Add 0 MemData2<<2 degree2     Seq

/***** Start resultdeg at end (i.e. degree3).  Of course, like degree1 and degree2, this is actually *4 */
Add degree2 degree1 resultdeg     Seq

/***** Initial value of poly3 is at end of result polynomial (since we are going to work backwards) */
Add poly3 resultdeg poly3     Seq
Add poly3 4 poly3     Seq

/***** Compute indexdeg1 and indexdeg2.  Next 4 lines are combination of  max function and following subtract */
forloop: Sub resultdeg degree1 indexdeg2     bneg forloop1

Add 0 degree1 indexdeg1     jump forloop2
forloop1: Add resultdeg 0 indexdeg1     Seq

Add 0 0 indexdeg2     Seq

/***** Initialize accum variable for inner loop.  */
forloop2: Add 0 0 accum     Seq

/***** Let indexdeg1 be ahead by one iteration (to avoid extra +1 in [] – see discussion in 2b) */
Add 4 indexdeg1 indexdeg1     Seq

/***** Next 6 microinstructions are the inner loop */
whileloop:Add poly1 indexdeg1  LatchCond1    Seq

Add indexdeg2 4 indexdeg2  rd ALU MemData1  Seq
Add indexdeg2 poly2      Seq
Sub indexdeg1 4 indexdeg1  rd ALU MemData2  Seq
Mul MemData1 MemData2      Seq
Add accum ALUout accum     bwhile whileloop

/***** End of while loop.  Write back result to poly3, update resultdeg and poly3 pointer */
endfor: Sub resultdeg 4 resultdeg  wr Poly3   Seq

Sub poly3 4 poly3     bfor forloop

/***** Last dummy instruction is just for fetching */
        fetch
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Problem 3: Speeding up the Loops
For the following problem, assume an in-order, MIPS-style pipelined architecture with up to 4
cycles in the EX stage, but full forwarding for operations that take less than 4 cycles.  Assume
the following number of execution cycles are required:

a. Floating-point multiply: 4 cycles
b. Floating-point addition: 2 cycles
c. Integer operations: 1 cycle

Assume as well that there is one branch delay slot, that there is no delay between integer
operations and dependent branch instructions, and that the load-use latency (or number of load
delay slots) is 2 cycles.

One possible pipeline that might behave this way could appear as follows:

 ID EX2 EX3

IF   EX1   EX4 WR
 BR MEM1 MEM2

Now, given this pipeline, the following code computes a dot-product.  Assume tha r1 and r2
contain addresses of arrays of floating-point numbers, and that r3 contains the length of the
arrays (in elements).  Assume that r4 is initialized to zero.  Then, the dot product can be
computed as follows:

dotprod: lw $f5, 0($r1) ; load element from first array
lw $f6, 0($r2) ; load element from second array
muls $f7, $f5, $f6 ; multiply elements
adds $f4, $f4, $f7 ; add elements to accumulator in f7
addi $r1, $r1, 4 ; advance pointers
addi $r2, $r2, 4
addi $r3, $r3, -1 ; decrement element count
bne $r3, $zero, dotprod  ; loop
nop ; Do nothing (branch delay slot)

Problem 3a:
How many cycles on average does each iteration take, without rearranging the code?

Ans: 14 cycles: 9 instructions + 2 stall cycles before “muls” + 3 stall cycles before “adds”.

Problem 3b:
Rearrange the code so that it gets as few cycles per iteration as possible (don’t unroll the loop).
Show the scheduled code.  How many cycles per iteration does it get now?

dotprod: lw $f5, 0($r1) ; load element from first array
lw $f6, 0($r2) ; load element from second array
addi $r1, $f1, 4 ; advance pointers
addi $f2, $r2, 4
muls $f7, $f5, $f6 ; multiply elements
addi $r3, $r3, -1 ; decrement element count
bne $r3, $zero, dotprod  ; loop
adds $f4, $f4, $f7 ; add elements to accumulator in f7

Now this gets 9 cycles/iteration: 8 instructions + one stall cycle before “adds”.
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Problem 3c:
Unroll the given loop once, and schedule it to completely avoid stalls.  Show your code.  How
many cycles per iteration does it get now?

dotprod: lw $f5, 0($r1) ; load element from first array
lw $f6, 0($r2) ; load element from second array
lw $f8, 4($r1) ; load another element from first
lw $f9, 4($r2) ; load another element from second
muls $f7, $f5, $f6
addi $r1, $r1, 8 ; advance pointers
muls $f10,$f8, $f9
addi $r2, $r2, 8
adds $f4, $f4, $f7 ; add elements to accumulator in f4
addi $r3, $r3, -2 ; decrement element count
bne $r3, $zero, dotprod  ; loop
adds $f4, $f4, $f10 ; add elements to accumulator in f7

Total cycles: 12 instructions, no stalls.  So, 12cycles/2iterations = 6 cycles/iteration

Problem 3d:
If you were to unroll the loop 8 times, how many cycles per iteration would this achieve?
(hint: you do not need to actually perform the unrolling, but justify your answer)

Ans: 4.5 cycles/iteration.  There are 4 substantive instructions/loop (2 loads, 1 muls, 1 adds).
The remaining 4 instructions (3 addi, 1 bne) get distributed over all iterations.  So: 4 × 8 + 4 =
36  cycles/8 iterations.

Problem 3e:
Now, assume that you want to design a new processor that is more deeply pipelined, i.e. which
has larger latencies for all of the operations. Maximize the latencies of instructions that the loop
can tolerate by rewriting the loop with software pipelining.  Do not unroll the loop (i.e. there will
be only 8 instructions). Only show code for the loop; you can ignore any startup or cleanup
instructions outside the loop.  Hint: this code will overlap 3 different iterations of the loop.

dotprod: adds $f4, $f4, $f7 ; add elements to accumulator in f7
muls $f7, $f5, $f6 ; multiply elements
lw $f5, 0($r1) ; load element from first array
lw $f6, 0($r2) ; load element from second array
addi $r1, $r1, 4 ; advance pointers
addi $r3, $r3, -1 ; decrement element count
bne $r3, $zero, dotprod  ; loop
addi $r2, $r2, 4

Problem 3f:
For the software-pipelined version of the loop, assuming that the loop runs without stalls, what is

• the maximum execution latency for muls? 7
• the maximum execution latency for adds? 8
• the maximum load-use latency (delay slots) for lw?  5

Problem 3g:
Assuming that most of the power in your original processor was consumed in the execute stages,
is the new processor likely to consume more, the same, or less power than the original?  Why?

Less.  Because things are more deeply pipelined, each stage is less complicated and could thus
be run at lower voltage to keep at same clock rate.
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Problem 4: Hazards and Advanced Pipelining
Problem 4a:
There are three different types of data hazards, RAW, WAR, and WAW. Define them, giving a
short code sequence to illustrate each, and describe how a 5-stage pipeline removes them:

a) RAW: Read After Write - first instruction has not yet modified (written to) register file yet, but next
instruction is trying to read that register.

add $1, $2, $3
addi $4, $1, 50

Fix: Forward data from the pipeline as needed.

b) WAR: Write After Read - first instruction is reading from a register that the next instruction has
somehow already modified.

add $1, $2, $3 # assume really long fetch or something
add $2, $5, $6 # assume writes really fast

Fix: Make each stage equal length in time and read the registers early and write late in the pipeline.

c) WAW: Write After Write - later instruction writes to a register before the former instruction has
modified it.

add $1, $2, $3
add $1, $4, $5

Fix: Only modify the register file in the WB stage.

Problem 4b:
What are control hazards? Name and explain two different techniques for getting rid of them.

(1) Waiting always fixes the problem, i.e. stall and bubble the pipeline.
(2) Branch Prediction is another more sophisticated solution.
(3) Another similar solution is to execute both branches.
(4) Changing the software model is also a valid solution, e.g. branch delay slot.

Problem 4c:
Come up with two reasons why designers don’t make 100-stage pipelines.  Are there
circumstances in which such a pipeline might make sense?

100 stage pipelines incur way too many data and control hazards, requiring way too
much hardware overhead to fix these hazards.  Having so many stages means having lots of
registers which means higher area, bigger clock net, more power dissipation, etc.

Such a pipe may be feasible if there are very few dependencies and very little decision
making such as in stream based processing like multimedia.

Problem 4d:
What are precise exceptions and why are they important?

Precise exceptions occur when all instructions following the one that made the exception
do not affect (modify) the state of the machine, and all instructions previous have finished
completely (i.e. written back to register file etc.).

Precise interrupts are important because they make getting back from the exception
easier to manage and easier to figure out which exception cause the problem and what the
problem is.
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Problem 4e:
Explain how to achieve precise exceptions in a standard 5-stage pipeline.  Be explicit.

A precise exception is achieved by keeping track of which instruction causes the exception and
waiting till the write back stage to cause the exception.  This ensures that all instructions following and
including the instruction that caused the exception will not modify the state of the system; and all
instructions before the exception-causing instruction are completed. To handle precise exception, extra
hardware such as the Exception PC (EPC) and Cause register are needed.

Figure 2: A basic Tomasulo architecture

Problem 4e:
Figure 2 shows the basic components of a Tomasulo architecture.  This architecture replaces the
normal 5-stages of execution with 4 stages: Fetch, Issue, Execute, and Writeback.  Explain what
happens to an instruction in each of them (be as complete as you can):

a) Fetch:
Fetch instructions from memory in program order and place into Instruction Queue.

b) Issue:
Get next instruction from Instruction Queue and send to appropriate reservation station,
replacing registers with values or tags (if the value is the pending result of an instruction in
some reservation station).

c) Execute:
Dispatch instructions queued in reservation units to execution units if when register (tag)
values are available. Mark the reservation stations as available.

d) Writeback:
Broadcasts result on the CDB (Common Data Bus).  Any instructions waiting for the result
will grab the value. This will also update the values in the register file.
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Problem 4f:
Explain how the Tomasulo architecture handles the three different types of data hazards:

RAW – wait for values to be broadcast on CDB before dispatching dependent instructions from
the reservation stations to execution units.

WAR – Because of register renaming, there is no WAR hazards.

WAW – Because of register renaming, there is no WAW hazards.

Problem 4g:
Assume that you have a long chain of dependent instructions, such as the following:

add $r1, $r2, $r3
add $r3, $r1, $r4
add $r7, $r3, $r5

...
Also assume that the integer execution unit takes one cycle for adds. What CPI would you
achieve for this sequence with the basic Tomasulo architecture, assuming that each of the stages
from (4f) are non-overlapped and take a complete cycle?

Answer: The CPI we are looking for is 2. Consider the following timing diagram:
EXE | WB

   | EXE | WB
   | EXE | WB

You can only dispatch a instruction waiting in the reservation station once every two cycles because the
WB takes a complete cycle to update the values of the tag and also decide which instruction in the
reservation station to dispatch to the Integer unit. Thus, one integer instruction is retired every two
cycles.

Problem 4h:
Assume that associative matching on the CDB is a slow enough operation that it takes much of a
cycle.  How can you still get a throughput of one instruction per cycle for long dependent chains
of operations such as given in (4g)?  Only well-thought-out answers will get credit.

Answer: To have the throughput of 1 cycle per instruction, we need to overlap the WB and EXE stages, as
shown in the following diagram:

EXE | WB
    | EXE | WB

     | EXE | WB
In this scheme, during the last stage of EXE stage, the decision about which instruction to dispatch in the
reservation station is also computed. As soon as the data become avaiable, the instruction can be
dispatched to the execution unit without additional delay.
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Problem 4i:
Finally, the Tomasulo algorithm has one interesting “bug” in it.  Consider the situation where
one instruction uses a value from another one.  Suppose the first instruction is issued on the same
cycle as the one that it depends on is in writeback.

add $r1, $r2, $r3 ← The result is broadcast
...

add $r4, $r1, $r1 ← This one is being issued

What is the problem?  Can you fix it easily?
Problem: As the second instruction is being issued, with tags from the register file, the first
instruction is finishing up and will remove tag (because the $r1 is no longer busy). Thus, the
second instruction will be waiting for a tag that does not exist at the end of the cycle and
deadlocks.

Solutions:
AS in MIPS register file, do write in the first half of the cycle and read in the second half of the
cycle. This way, the second instruction will just get the actual value of $r1, instead of the a tag
that points to $r1.


