
1

University of California, Berkeley

College of Engineering

Computer Science Division  EECS

Spring 1999 John Kubiatowicz

Midterm I
SOLUTIONS
March 3, 1999

CS152 Computer Architecture and Engineering

Your Name:

SID Number:

Discussion Section:

Problem Possible Score

1 15

2 15

3 20

4 20

5 30

Total



2

Problem 1: Performance
Problem 1a:
Name the three principle components of runtime that we discussed in class.  How do they
combine to yield runtime?

Three components: Instruction Count, CPI, and Clock Period  (or Rate)

Rate Clock
CPICountInst 

               

period ClockCPI CountInst   Runtime

×=

××=

Now, you have analyzed a benchmark that runs on your company’s processor.  This
processor runs at 300MHz and has the following characteristics:

Instruction Type Frequency (%) Cycles
Arithmetic and logical 40 1

Load and Store 30 2
Branches 20 3

Floating Point 10 5

Your company is considering a cheaper, lower-performance version of the processor.
Their plan is to remove some of the floating-point hardware to reduce the die size.

The wafer on which the chip is produced has a diameter of 10cm, a cost of $2000, and a
defect rate of  1 / (cm2).  The manufacturing process has an 80% wafer yield and a value
of 2 for α.  Here are some equations that you may find useful:

The current procesor has a die size of 12mm × 12mm.  The new chip has a die size of
10mm ×10mm, and floating point instructions will take 12 cycles to execute.

Problem 1b:
What is the CPI and MIPS rating of the original processor?

CPI = .4× 1+ .3×2 + .2×2 + .1×5 = 2.1 cycles/inst

MIPS=
1.2

300MHz
= 143 MIPS

( )
area die2

diameterwafer 

area die

diameter/2wafer 
  dies/wafer

×
×π−×π=

2

α−







α
×+×= area dieareaunit per  defects

1yield wafer  yield die



3

Problem 1c:
What is the CPI and MIPS rating of the new processor?

CPI = .4×1+.3×2+.2×3+.4×12= 2.8 cycles/inst

MIPS =
8.2

300MHz
= 107 MIPS

Problem 1d:
What is the original cost per (working) processor?

Problem 1e:
What is the new cost per (working) processor?

Problem 1f:
What is the improvement (if any) in price per performance?

So, 39% improvement.  Note that we took most reasonable solutions that took ratios of
the old and new price-performance ratios.

( )
dice/wafer 3603.36

2mm4412

mm001
2144mm

2100mm/2
  dice/wafer ⇒=

×

×π−×π=

27.0

2

2

2cm44.12cm/1
1.8  yield die =

−












 ×+×=

( )
dice/wafer 5633.56

2mm0012

mm001
2100mm

2100mm/2
  dice/wafer ⇒=

×

×π−×π=

355.0
2

/
2

=








 ×+×=
−22 1cmcm1

1.8  yield die

dice/wafer good 99.70.2736 dice/wafer good ⇒=×=

die/22.222$
9

$2000
  cost/die ==

dice/wafer good 0.3556 dice/wafer good 199.195 ⇒=×=

die
19

$2000
  cost/die /3.105$==

( ) ( )
( ) 37.

55.1

98.055.1
% =−=

−
=

old

newold
ormprice/perf

ormprice/performprice/perf
 t improvemen 



4

Problem 2: Delay For a Full Adder

A key component of an ALU is a full adder.  A symbol for a full adder is:

‘Problem 2a:
Implement a full adder using as few 2-input AND, OR, and XOR gates as possible.  Keep
in mind that the Carry In signal may arrive much later than the A or B inputs.  Thus,
optimize your design (if possible) to have as few gates between Carry In and the two
outputs as possible:

Full Adder

A B

S

CinCout

A

Cin

B
S

Cout



5

Assume the following characteristics for the gates:
AND: Input load: 150fF,  

Propagation delay: TPlh=0.2ns, TPhl=0.5ns,
Load-Dependent delay: TPlhf=.0020ns, TPhlf=.0021ns

OR: Input load: 100fF
Propagation delay: TPlh=0.5ns, TPhl=0.2ns
Load-Dependent delay: TPlhf=.0020ns, TPhlf=.0021ns

XOR: Input load: 200fF,
Propagation delay: TPlh=.8ns, TPhl=.8ns
Load-Dependent delay: TPlhf=.0040ns,TPhlf=.0042ns

Problem 2b:
Compute the input load for each of the 3 inputs to your full adder:

Input LoadA =  (150 + 100 + 200) fF = 450 fF
Input LoadB =  (150 + 100 + 200) fF = 450 fF
Input LoadCin = (150 + 200) fF = 350 fF

Problem 2c:
Identify two critical paths from the inputs to the Sum and the Carry Out signal.
Compute the propagation delays for these critical paths based on the information given
above.  (You will have 2 numbers for each of these two paths):

Critical path to Sum is from either A or B to Sum.  Since the High⇒Low transition is
slowest for the XOR gate, we will choose the value of the Cin signal so that the XOR gate
tying A and B together goes from high to low:

TPlh = 0.8 + 0.0042 × 200 + 0.8 = 2.44 ns
TPhl = 0.8 + 0.0042 × 200 + 0.8 = 2.44 ns

Critical path for Carry Out signal is also from A or B:

TPlh = 0.5ns + 0.0020 × 150 + 0.2ns + .0020×100 + .5ns= 1.7 ns
TPhl = 0.2 ns +0.0021 × 150 + 0.5ns + .0021× 100 + .2ns= 1.425 ns

Problem 2d:
Compute the Load Dependent delay for your two outputs.

This is easy: it is just equal to the LDD of the output gate:

TPlhfSUM = 0.0040.   TPhlfSUM =0.0042
TPlhfCout = 0.0020.  TPhlfSUM = 0.0021



6

Problem 3: Division
Here is pseudo-code for an unsigned division algorithm.  It is essentially the last divider
(#3) that  we developed in class.  Assume that quotient and remainder are 32-bit global
values, and the inputs divisor and dividend are also 32 bits.

divide(dividend, divisor)
{ int count;

/* Missing initialization instructions. */

ROL64(remainder,quotient,0);
while (count > 0) {

count--;
if (remainder ≥ divisor) {

remainder = remainder – divisor;
temp = 1;

} else {
temp = 0;

}
ROL64(remainder,quotient,temp);

}
/* Something missing here */

}

The ROL64(hi,lo,inbit) pseudo-instruction treats hi and lo together as a 64-bit
register. Assume that inbit contains only 0 or 1.  ROL64 shifts the combined register
left by one position, filling in the single bit from inbit into the lowest bit of lo.

Problem 3a [ 3 pts]:
Implement ROL64 as 5 MIPS instructions.  Assume that $t0, $t1, and $t2 are the
arguments.
Hint: what happens if you use signed slt on unsigned numbers?

ROL64: slt $t3, $t1, $zero ; Put t1[31] => t3
sll $t0, $t0, 1 ; Shift MSW
or $t0, $t0, $t3 ; Or in lowest bit
sll $t1, $t1, 1 ; Shift LSW
or $t1, $t1, $t2 ; Or in lowest bit

Problem 3b [ 4 pts]:
This divide algorithm is incomplete.  It is missing some initialization and some final
code.  What is missing?

Init: Count = 32; Quotient = Dividend; Remainder = 0;
Final: Remainder >>= 1;

/* The following is needed to catch case in which high bit of remainder
   is set.  This is only possible if high-bit of divisor is set &
   quotient is zero.  Very special case: We didn’t require this! */

if (quotient == 0) Remainder = dividend;



7

Problem 3c:
Assume that you have a MIPS processor that is missing the divide instruction. Implement
the above divide operation as a procedure.   Assume dividend and divisor are in $a0 and
$a1 respectively, and that remainder and quotient are returned in registers $v0 and $v1
respectively.  You can use ROL64 as a pseudo-instruction that takes 3 registers.  Don’t
use any other pseudo-instructions, however.  Make sure to adher to MIPS register
conventions, and optimize the loop as much as possible.

Solution:
1) divide: ori $t4, $zero, 32 ;Initialize count
2) ori $v0, $zero, 0 ;Rem = 0
3) add $v1, $a0, $zero ;Quotient = Dividend
4) ROL64 $v0, $v1, $zero
5) divloop: addi $t4, $t4, -1 ;Decrement count
6) sltu $t5, $v0, $a1 ;Check: Rem < Divisor ?
7) bne $t5, $zero, nosub ;Yes.  No subtract
8) subu $v0, $v0, $a0 ;Rem=Rem-divisor
9) ori $t6, $zero, 1 ;Bit to shift (temp)
10) j dorol
11) nosub: ori $t6, $zero, 0 ;Bit to shift (temp)
12) dorol: ROL64 $v0,$v1,$t6 ;Do the ROL operation
13) bne $t4,$zero,divloop ;Loop is count nonzero
14) srl $v0,$v0,1 ;Final shift of remainder
15) bne $v1,$zero,exit ;Check quotient=0
16) add $v0,$a0,$zero ;Ah.  Let rem=dividend
17) exit: jr $ra

Notes on solution (by line number):
• This inner loop is 12 cycles, which is the average good solution (accepted as answer)
• We did require that you be as minimal as possible on the inner loop.
• Note that we have moved loop check to end of  loop (line 13),  saving a cycle in loop.
• Note that signed ops (such as slt) at line 6 doesn’t work for 32-bit unsigned values.

Similiarly, subtracting and checking the “sign” of the result doesn’t work either.  The
simplest way to understand this is to consider the case when the quotient has its high
bit set.  Then , even though remainder = 0, we will think we should subtract!

• It is important to have a logical shift in line 14, since you don’t want to simply copy
the high bit.  Again, that is because this is an unsigned multiplication.

• Further note on closing lines 15 and 16 (which we didn’t require):
This is a special case required to get the correct answer on those cases for which the
remainder has its high bit set. Since our last action (line 14) is to logically shift left,
there is no way to get such a remainder.  Thus, something is clearly broken up to line
14.  Fortunately, we know that remainder < divisor.  So, if the remainder has its high
bit set, so does the divisor.  However, since:
               dividend = quotient × divisor + remainder
we see that we can’t get a 32-bit result on the left if both the quotient×divisor and
remainder terms have their high-bits set.  This means that:
               remainder has high-bit set ⇒ quotient = 0.
Thus, the easy fix is to check for quotient = 0, and always set remainder=dividend
(always works).



8

Here is a faster inner loop (I believe this is the fastest, but I could certainly be wrong).
The trick is to use the result bits from the comparison in line 6 directly to form the
quotient.  Note that they are inverted from what we want.  So, we just use them and invert
all the bits of the quotient after we are done.  This saves 32 x 2 – 2  = 62 cycles

1) divide: ori $t4, $zero, 32 ;Initialize count
2) ori $v0, $zero, 0 ;Rem = 0
3) add $v1, $a0, $zero ;Quotient = Dividend
4) ROL64 $v0, $v1, $zero
5) divloop: addi $t4, $t4, -1 ;Decrement count
6) sltu $t5, $v0, $a1 ;Check: Rem < Divisor ?
7) bne $t5, $zero, dorol ;Yes.  No subtract
8) subu $v0, $v0, $a0 ;Rem=Rem-divisor
9) dorol: ROL64 $v0,$v1,$t5 ;Note: t5 is inverted!
10) bne $t4,$zero,divloop ;Loop is count nonzero
11) addi $t6,$zero,-1 ;All 1s in t6
12) xor $v1,$v1,$t6 ;Invert bits in quotient
13) srl $v0,$v0,1 ;Final shift of remainder
14) bne $v1,$zero,exit ;Check quotient=0
15) add $v0,$a0,$zero ;Ah.  Let rem=divident
16) exit: jr $ra

Problem 3d:
What is the “CPI” of your divide procedure (i.e. what is the total number of cycles to
perform a divide)?  Assume that each MIPS instruction takes 1 cycle.

Need to consider (1) initialization code, (2) 32 x loop code and, (3) closing code.
Remember that ROL is 5 cycles (5 instructions).  Some people who neglected to move
their branch condition to the end of the loop forgot that there would be one last execution
of the branch when count = 0.  Assume worst-case delay (the maximum time).  To do
this, we find the largest time that we might take in the inner loop.

For our first solution:

CPI = 8 + 32 x 12 + 4 = 396 cycles/divide

For the second:

CPI = 8 + 32 x 10 + 6 = 334 cycles/divide



9

Problem 4: New instructions for a single-cycle data path

The Single-Cycle datapath developed in class is shown below (similar to the one in the
book):

It supports the following instructions.  (Note that, as in the virtual machine, the branch is
not delayed.)

op | rs | rt | rd | shamt | funct = MEM[PC]
op | rs | rt |        Imm16   = MEM[PC]

INST                 Register Transfers

ADDU R[rd] ← R[rs] + R[rt]; PC ← PC + 4
SUBU R[rd] ← R[rs] - R[rt]; PC ← PC + 4
ORI R[rt]  ← R[rs] + zero_ext(Imm16); PC ← PC + 4
LW R[rt]  ← MEM[ R[rs] + sign_ext(Imm16)]; PC ← PC + 4
SW MEM[R[rs] + sign_ext(Imm16)] ← R[rs]; PC ← PC + 4
BEQ if ( R[rs] == R[rt] ) then  PC ← PC + sign_ext(Imm16)∪ 00

else  PC ← PC + 4

Consider adding the following instructions: ADDIU, XOR, JAL, and BGEZAL (branch
on greater than or equal to zero and link).  This last instruction branches if the value of
register rs ≥ 0; further, it saves the address of the next instruction in $ra (like JAL).
Remember that the JAL format has a 6-bit opcode + 26 bits used as an offset...

im
m

16

32

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216
imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRtRs

=

A
dder

A
dder

P
C

Clk

00

M
ux

4

nPC_sel

P
C

 E
xt

Adr

Inst
Memory

3



10

M
U

X

32-bit A
dder

32-bit A
dder

PC[31:28] | INST[25:0] | 00

4

IM
M

16

P
C

[31:28]

32

32

32

32

32

4

INST[25:0]

26

P
C

P
C

 E
xtend

+
R

ight shift 2

nPC_Sel PC out

32 32-bit
Registers

MUX
5

5

Rt
RtRd31

RegDest
02 1

Rs

5

busW

MUX
02 1

MemtoReg

Output of
ALU

Output of
Memory

PC+4

Problem 4a:
Describe/sketch the modifications needed to the datapath for each instruction.  Try to add
as little hardware as possible.  Make sure that you are very clear about your changes.
Also assume that the original datapath had only enough functionality to implement the
original 5 instructions:

ADDIU: No change to data path
XOR: Must enhance the ALU to include the XOR functionality.

JAL: Must enhance data path to (1) permit proper update to PC and (2) write back
PC+4 to register file (into the $ra register). There are many ways to dot this.  We will
show one.  Note that the bottom 26 bits of the instruction must be combined with the top-4
bits of the current PC and 2 zero bits to form the new PC for a JAL:

 NewPC = OldPC[31:28] || Instruction[25:0] || 00.

Also, notice that we now have more possibilites for three of the control signals:
nPC_SEL, RegDest, and MemToReg.

BGEZAL: Same modifications to register destination logic and
MemToReg mux as above.  Also, to check for the condition, it turns
out that checking R[rs]≥ 0 is equivalent to checking the MSB of the
RegA output bus from the register file:

BusA

B
u

sA
[b

it 31]

GEZ



11

Problem 4b:
Specify control for each of the new instructions.  Make sure to include values (possibly
“x”) for all of the control points.

Note that we expected you to include all of the relevant control signals in your design.
Further, note that the two lines for BGEZAL (taken/not taken) are different. So, if you
included only one line there, you needed to make sure that it was clear how signals
depended on GEZ.

Instr GEZ
nPC_

sel
Reg
Wr

Reg-
Dest

ALUctrl ExtOp
ALU
src

Mem
Wr

MemTo
Reg

ADDIU X 0 1 0 Add SignEx 1 0 0

XOR X 0 1 1 XOR X 0 0 0

JAL X 2 1 2 X X X 0 2

BGEZAL 0 0 0 X X X X 0 X

BGEZAL 1 1 1 2 X X X 0 2



12

Problem 5: Multiplication
Problem 5a:
Draw the datapath for a multi-cycle, 32-bit x 32-bit unsigned multiplier. Try to minimize
hardware resources.  Assume a single 32-bit adder.  Further, to be consistent with MIPS,
call the two 32-bit registers that contain the result “hi” and “lo”. Draw the control for this
multiplier as a round oval with all control signals labeled.

Note: People who simply copied the data path from the book without labeling all of the
required control signals didn’t get full credit for their datapath.

Problem 5b:
Describe the algorithm for performing a multiplication with this hardware.  You can use
pseudo-code.  Make sure to include any initialization that might be required.  Also, make
sure that any loops are labeled with the number of iterations.

WE assume that the controller has an internal counter that it can use to count to 32.  This
is equivalent to assuming that it has a state machine with 32 states.

1. Assert LoadLO/ClearHI to initialize; Set count = 32;
2. if (LO[0] == 1) assert LoadHI
3. Assert ShiftAll
4. decrement count and loop to 2 if count != 0
5. Result in HI/LO registers

Note that this trick with the carry-out of the ALU is necessary to get full precision on the
result.  However, if you assumed only a zero input, this will work “most of the time” (and
we didn’t dock for this).

32-bit Adder

HI register
(32 bits)

LO register
(32 bits)

Lo
ad

H
I

C
le

ar
H

I

Lo
ad

LO

Multiplicand
Register

ShiftAll

LoadMp

S
ave

C
out

Cout

3232

32

Control
Logic

Input
Multiplicand

Input
Multiplier

32

LO[0]

Result[HI] Result[LO]

32 32



13

[ Problem 5 continued ]
Single-bit Booth encoding results from noticing that a sequence of ones can be
represented by two non-zero values at the endpoints:

The encoding uses three symbols, namely: ��DQG�� ,0,1 .  (The 1 stands for “-1”).   A
more complicated example of Booth encoding, used on a two’s-compliment number is
the following:

To perform Booth encoding, we build a circuit that is able to recognize the beginning,
middle, and end of a string of ones.  When encoding a string of bits, we start at the far
right.  For each new bit, we base our decision of how to encode it on both the current bit
and the previous bit (to the right).

Problem 5c:
Write a table describing the this encoding.  It should have 2 input bits (current and
previous) and should output a 2 bit value which is the two’s compliment value of the
encoded digit (representing 1or  ,0,1 ):

Answer was given in class:

Cur Prev Out
0 0 00
0 1 01
1 0 11
1 1 00

11000011000000111111 =−=

11010100100000001110111111111100 =



14

Problem 5d:
Modify your datapath to do 32x32 bit signed multiplication by Booth-encoding the
multiplier (the operand which is shifted during multiplication).  Draw the Booth-encoder
as a black-box in your design that takes two bits as input and produces a 2-bit, two’s
complement encoding on the output.   Assume that you have a 32-bit ALU that can either
add or subtract.  (Hint: Be careful about the sign-bit of the result during shifts.   Also, be
careful about the initial value of the “previous bit”.)  Explain how how your algorithm is
different from the previous multiplier.

The neat thing about this type of booth encoding, is that you don’t have to change the
algorithm (controller).  Just use the “sign” bit of the booth encoded signal to control the
ALU.  Call the low bit of the booth output “LO[0]” (even though it isn’t really), and
POOF, the algorithm is identical.

Note that you DO have to be careful about the sign bit.  For fully correct operation, you
have to assume that the adder will overflow and need to reconstruct the sign bit.  To fix
this, we conceptually sign extend the two 32-bit values to 33-bit values.  Then, to build a
33-bit adder, we use our 32-bit adder in combination with an extra 3-input xor-gate
(which does the “sum” portion of the top bit -- see problem 2).  This way we know that
we won’t get an overflow, and will have the correct 33rd bit to shift in when we shift.
Note that we accepted solutions which simply sign-extended by wrapping the high-bit of
the HI register back during shifting. Neglecting sign-extention was not ok, however.

32-bit ALU

HI register
(32 bits)

LO register
(32 bits)

Lo
ad

H
I

C
le

ar
H

I

Lo
ad

LO

Multiplicand
Register

ShiftAll

LoadMp

S
ave

C
out

Cout

32

32

32

Input
Multiplicand

LO[0]

Result[HI] Result[LO]

32 32

HI[31]

Multi[31]

P
rev

B
ooth

E
ncoder ENC[0]

ENC[1]

"L
O

[0
]"

Control
Logic

Input
Multiplier

32

Sub/Add



15

Problem 5e: By encoding two bits at a time, we could potentially speed up multiplication
a lot.  To do this,  you simply use your table from problem 5c on two successive bits at
the same time.  So, we are going to make a table that has three input bits (namely the 2
bits for encoding and one previous bit) and which has a single radix-2 symbol as an

output.  This output will be one of: 3,2,1,0,1,2,3 .

To help in this, you will first list the two encoded bits that result from using the table in
(5c) to encode bits In1/In0 and bits In0/Prev.  Don’t bother with two’s complement, just

use the symbols: 1 and ,0,1  .  Call these results Enc1 and Enc0.   Then, treat these two
encoded bits as representing a composite number, with the left digit being in the “2s”
place (call this the “output-2” column).  So, a sample line from your table will be:

Example:  In1 In0  Prev    Enc1 Enc0    Output

 1    0      1      1    1        1    (this is 2x(-1) + 1 = -1)

Write the complete 8-entry table (note again that you are leaving the output symbols as

one of 3,2,1,0,1,2,3 ):

This answer should have been a simple matter of plugging in values from table 5d:

In1 In0 Prev Enc1 Enc0 Output
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 1 1 1
0 1 1 1 0 2
1 0 0 1 0 2
1 0 1 1 1 1
1 1 0 0 1 1
1 1 1 0 0 0

Problem 5f: Notice that 3 and 3  never show up in the output column.  Explain why this
is true.  Also, explain why this is good for implementing radix-4 (two-bit at a time)
multiplication.

Because 3 and 3  represent two overlapping “end of string of ones” or “beginning of
string of ones” respectively.  It is not possible, for instance, for a string of ones to end on
two consecutive bits.  Alternatively, you could say that 3 derives from both Enc1=1 and
Enc0=1, which would require In0 to be both zero and one.

This is good for radix-4 multiplication, because it means that we only have to multiply the
multiplicand by 0, 1, or 2.  These are easy.  Multiplying by 3 would be more challenging.



16

34-bit ALU

LO register
(16x2 bits)

Lo
ad

H
I

C
le

ar
H

I

Lo
ad

LO

Multiplicand
Register

ShiftAll

LoadMp

E
xtra

2 bits
3232

LO[1:0]

Result[HI] Result[LO]

32 32

P
rev

LO
[1]

B
ooth

E
ncoder ENC[0]

ENC[2]

"L
O

[0
]"

Control
Logic

Input
Multiplier

32

Sub/Add

2

34

34

32

Input
Multiplicand

32=>34
signEx

34

34x2 MUX

32=>34
signEx

<<1
34

ENC[1]

Multi x2/x1

2

2HI register
(16x2 bits)

2

01

34

Problem 5g [Extra Credit]:
Draw a datapath that does signed multiplication, two bits at a time and include the
multiplication algorithm.  Draw the two-bit Booth encoder as a black box  which
implements output from the table in problem 5f .  Make sure that you describe how the 5
possible output symbols (i.e. 2 and ,1,0,1,2 ) are encoded (hint: two’s complement is not
the best solution here).  As before, assume that you have a 32-bit ALU that can add
andsubtract:

Code Enc2 Enc1 Enc0
2 0 1 1
1 0 0 1
0 0 0 0
1 1 0 1

2 1 1 1

This solution is remarkably similiar to the other two solutions.  Notice that we have
chosen an encoding for the Booth symbols that is similiar to sign/magnitude.  Thus, the
sign bit is Enc2, which goes directly to select Add/Subtract.  The next bit  (Enc1)
indicates whether or not we should multiply the multiplicand by 2.  Finally, the last bit
indicates “non-zero”, and is once again equivalent to “LO[0]”.   If we had gone with
complete sign-magnitude (also ok), we would “or” together Enc0/Enc1 to get our
replacement for “LO[0]”.  Except for the fact that this solution shifts only 16 times, the
control state machine is identical to that used in the previous two problems.

[continued on next page]



17

The key changes to the datapath are two-fold
1. We are now multiplying the multiplicand by 2or  ,1,0,1,2 . To do this, we need to

either shift by one or not.  This is the mux just under the multiplicand register.
2. We have formatted our high and low registers so that we can shift pairs of bits at

once.  Notice that “ShiftAll” now causes two matched shift registers (one containing
even bits, the other containing odd ones) to shift. This is like shifting by two in the
previous solution.

3. Rather than dealing with a “hack” carry solution like the last one, we simply use a 34
bit adder (built with a 32-bit + full/adders if necessary).  We sign-extend everything
to 34 bits.  We need 33 bits for normal operation, since a 32-bit value times 2 may
actually be a 33 bit item. The 34th bit is used for exactly the same reason that we used
the 33rd bit in the previous solution – to have the right thing to shift in.

Notice that a number of people tried to handle multiplication by two by first shifting by
one, adding, then shifting  by one again.  While this will work, it destroys the advantage
in speed gained by radix-4 Booth encoding (i.e. taking half the number of cycles to
multiply).

Finally, to make this really fast, you would want to combine the logic for “LoadHI” with
the logic for “ShiftAll”, so that you could do them at the same time.  This would make the
multiplier truly run in 16 cycles.  We didn’t expect you to come up with this.


