
CS152
COMPUTER ARCHITECTURE AND ENGINEERING

EXAMINATION #2

N A M E : _

DISCUSSION SECTION TIME:_____________

PROBLEM NUMBER SCORE

1

2

3

4

TOTAL SCORE

NOTE: Please show your work CLEARLY for all problems. I hope you
enjoy the test!

PROBLEM 1: PIPELINING/HAZARDS

For all five parts of this question, assume that we are using the
five-stage pipelined MIPS machine described in the CS152 textbook.

a. (6 points) The following is some code from Mr. Oza’s Nut Factory.
Assume that the pipelined datapath has NO FORWARDING. Find the
register hazards in the following code. Enter your answers in the
table on the next page. Also, for each hazard that you find, classify
the hazard (under “Hazard Type” in the table below) into one of the
following three types:

(1). The write register of the instruction in the EXECUTION
stage is the same as the read register of the instruction in the
INSTRUCTION DECODE stage.

(2). The write register of the instruction in the MEMORY stage
is the same as the read register of the instruction in the
INSTRUCTION DECODE stage.

(3). The write register of the instruction in the WRITE-BACK
stage is the same as the read register of the instruction in the
INSTRUCTION DECODE stage

When designating the two instructions between which there is a
hazard (under Instruction#1 and Instruction #2 below), use the
number to the left of the instruction. When designating the type of
hazard, use the number corresponding to one of the three hazards
listed above.

1. add $3,$1,$2
2. lw $1,0($4)
3. and $5,$3,$4
4. and $6,$1,$2
5. or $1,$3,$6
6. sw $1,4($4)
7. lw $2,4($4)
8. sub $3,$5,$6

Instruction #1 Instruction #2 Register(s) Hazard Type
1 3 $3 2
2 4 $1 2
4 5 $6 1
5 6 $1 1

b. (5 points) Ben “The Hazard Buster” Bitdiddle (remember him?)
says that instruction 7 might not load the value stored by
instruction 6. Is this true? Why or why not?

Solution: This is NOT true. The reason is that memory reads AND
writes take place in only one stage of the pipeline (the MEM stage).
Since the MEM stage of an earlier instruction ALWAYS comes before
the MEM stage of a later instruction, memory reads/writes of earlier
instructions are always completed before those of subsequent
instruct ions.

c. (6 points) Rewrite the code above WITHOUT CHANGING ITS EFFECT
so that it has the fewest number of nop instructions. Again, assume
there is NO FORWARDING.
Solution:
1. add $3,$1,$2
2. lw $1,0($4)

nop
nop

3. and $5,$3,$4
4. and $6,$1,$2

nop
nop
nop

5. or $1,$3,$6
8. sub $3,$5,$6 /* Note that instruction 8 has been moved up

nop
nop

6. sw $1,4($4)
7. lw $2,4($4)

d. (4 points) Pipeline the following circuit for maximum throughput
by adding pipeline registers (by drawing vertical lines on one or
more wires) at appropriate places. Use as few pipeline registers as
possible. On each component, the number in parentheses is that
component’s latency. THERE ARE NO WIRE DELAYS OR OTHER DELAYS
IN THE CIRCUIT. None of the components are clocked; therefore, you
have to make sure that, for each component, both inputs arrive at the
same time.

(1)

(2)

(1)

(2)

(1)

(1)

(2)

e. (4 points) What is the lowest possible cycle time for the
pipelined version of the circuit above? How can you figure it out
without actually pipelining the circuit?

Solution: The lowest possible cycle time for the pipelined version
of this circuit is 2. This is true because the component with the
longest latency has latency 2. During a cycle, all components must
have a chance to finish their computation, so the cycle time needs to
be at least 2 to allow the slowest components to finish.

PROBLEM 2: BUSES

a. (6 points) Name three traditionally classified buses and their
features:

1. Processor-memory buses: short, genrally high speed, and matched
to the memory system so as to maximize memory-processor
bandwidth.
2. I/O buses: lengthy, can have many types of devices connected to
them, and often have a wide range in the data bandwidth of the
devices connected to them.
3. Backplane buses: designed to allowprocessor, memory, and I/O
devices to coexist on a single-bus.

b. (16 points) We want to compare the maximum bandwidth for a
synchronous and an asynchronous bus.

 - The synchronous bus has a clock cycle time of 30ns, and each bus
 transmission takes 2 clock cycles.
 - The asynchronous bus requires 35ns per handshake.
 - The data portion of both buses is 32 bits wide.
 - Addresses are 32 bits(word) long but the returning data are 64
 bits(double word) long.

 Find the bandwidth for each bus when performing one-double-word
 READS from a 100ns memory (64 bits data).

Calculations for Synchronous bus (4 points):

1. Send the address to memory: 30ns x 2 cycles = 60ns
2. Read the memory: 100ns
3. Send the first half of the data to the device: 30ns x 2 cycles =
60ns
4. Send the second half of the data to the device: 30ns x 2 cycles =
60ns

Thus, the total time is 280ns. This yields a maximum bus bandwidth
o f
8 bytes every 280ns, or

 8 bytes MB
 --------- = 28.57 --------
 280ns second

Synchronous Bus bandwidth (4 points): 36.4 MB/second
(Megabytes/Second)

Calculations for Asynchronous bus (4 points):

1. Mem sees the Readreq line: 35ns
2. I/O devices sees the Ack: 35ns
3. Mem sees the Readreq low: 35ns
4* When data is ready: Max ((100ns-70ns),(35ns*3-70ns)) = 35ns
5. I/O sees DataRdy: 35ns
6. Mem sees Ack: 35ns
7. I/O sees DataRdy low: 35ns
8* Mem sees Ack Low: 35ns
9. I/O sees DataRdy: 35ns
10. Mem sees Ack: 35ns
11. Finally I/O seeing DataRdy go low, drops the Ack line: 35ns

Step 1: 35ns
Steps 2,3,4: maximum (3x35ns, 100ns)=105ns
Steps 5,6,7,8,9,10,11: 7x35ns=245ns

Thus, total time to perform the transfer is 385ns, and the maximum
bandwidth is

 8 bytes MB
 --------- = 20.78 --------
 385ns second

Asynchronous Bus bandwidth: 20.78 MB/second

c. (3 points) Which of two buses scales better with technology
changes when used as I/O bus? Why?

Asynchronous buses are used as I/O buses due to its capacity in
terms of physical distance and the number of devices that can be
connected to the bus. As technology changes, asynchronous buses
are more flexible to be able to support a wider variety of device
response speed.

PROBLEM 3: MEMORY SYSTEM DESIGN

In this problem, you are going to design a memory system for a
computer. One thing we want you to learn from this class is how to
solve a BIG problem by solving a series of little problems. So we
have divided this problem into multiple sub-problems.

CPU

Write Through
Physical Addressed

Data Cache

Store Buffer

Main
Memory

First here are some numbers and equations you may need to solve
this problem:

Virtual Memory Page Size = 4K Byte
DRAM Chips Available:
 Size: 4 Megabit = 256K words x 8-bit
 Read Access Time = Write Access Time = 50ns
 Read Cycle Time = Write Cycle Time = 100ns

Data cache Options Hit Time Miss Rate Miss Penalty
J-byte Direct-Mapped 1 cycle 8% 4 cycles
L-byte 2-way Set Associative 1 cycle 4% 6 cycles
M-byte 4-way Set Associative 1 cycle 2% 8 cycles

Note: J, L, M are values you need to pick in Part (a) of this problem

Queuing Theory Review:
Utilization = Request Rate / Service Rate
Average Q Length = Utilization / (1 - Utilization)

 Probability of Overflow of a N-entry Q = (Utilization)N

Part (a) Physically Addressed Data Cache (12 points)

Part (a): The first thing you need to pick is the configuration of the
write-through, physically addressed, data cache. Your options are:

• J-byte Direct Mapped
• L-byte 2-Way Set Associative
• M-byte 4-Way Set Associative

(a.1) (2 points): What are J, L, and M in order to index these caches
with the virtual address?

Answer: J = 4 KB L = 2 x 4 KB = 8KB M = 4 x 4 KB = 16 KB

a.2 (6 points): Assume Load instructions have a CPI of 1.2 if they h i t
in the data cache and if they miss, they have a CPI of (1.2 + Miss
Penalty). All other instructions have a CPI of 1.2. Furthermore
assume 20% of the instructions are loads. What is the machine’s CPI
for each of the 3 cache options (keep 3 decimal points for your
answer, example: 1.xxx)? Which cache should you use if CPI is the
only criterion?

CPI (J-byte Direct Mapped) = 0.8 x 1.2 + 0.2 x (1.2 x 92% + (1.2+4) x
8%) = 1.264 (1.5 pt)
 CPI (K-byte 2-Way) = 0.8 x 1.2 + 0.2 x (1.2 x 96% + (1.2+6) x 4%) =
1.248 (1.5 pt)
 CPI (M-byte 4-Way) = 0.8 x 1.2 + 0.2 x (1.2 x 98% + (1.2+8) x 2%) =
1.232 (1.5 pt)
Since the 4-way set associative cache has the lowest CPI, we should
use that if the CPI is the ONLY criterion (1.5 pt).

a.3 (4 points) Assume if the direct-mapped cache is used, the
machine cycle time is 20ns. If the 2-way cache is used, cycle time
is 22ns. 4-way cache is use, cycle time is 24ns. What is the
average time per instruction for each option and what cache should
you use?

Average Time (Direct Mapped) = 1.262 x 20ns =
25.280ns/instruction (1pt)

Average Time (2-way) = 1.248 x 22ns = 27.456ns/instruction
(1pt)

Average Time (4-way) = 1.232 x 24ns = 29.568ns/instruction
(1pt)
We should pick the direct-mapped cache!!! (1 pt) Lesson: CPI alone
can be misleading.

Part (b) Store Buffer Design (8 points)

Store Buffer

Main
MemoryCPU

Store Frequency? DRAM Service Rate?

How many entries?

(b) In this part, you need to pick the length of the store buffer. For
this part of the problem we will assume (do NOT use the result of
Part(a) for this part):
 Machine’s CPI = 1.3 Cycle Time = 20 ns

Percentage Instructions that are stores = 15 %

b.1 (1 point): What is the store frequency with respect to time?

Average Instruction Rate = 1 / (1.3 x 20ns) = 3.846 x 1 0 * * 7
inst r . /sec

Store Frequency = 15% * (3.846 x 10**7) = 5.769 x 1 0 * * 6
stores/sec

b.2 (1 point): What is the maximum rate at which DRAM can service
store requests? Assume that the DRAM Write Cycle Time = 100ns.

DRAM Write Cycle Time = 100ns
Max. DRAM Service Rate = 1/100ns = 1.00 x 1 0 * * 7

requests/sec

b.3 (2 points) What is the utilization and mean Q length based on
queuing theory?

Utilization = 5.769*10**6/10 **7= 0.5769
Q Length= 0.5769 / (1 - 0.5769) = 1.363

b.4 (1 point) What is the probability of overflow if the queue has two
entr ies?

(0.5769)**4 = 0.11 => 11% still too high
(0.5769)**6 = 0.038 => 3.8% => So 6 entries is good enough.

b.5 (3 points) What is the minimum number of entries the Store
Buffer needs to have to lower the probability of buffer overflow t o
less than 4%?

Part (c) Main Memory Design (5 points)

Data Cache
Block Size = 32B

Main
Memory

N = ? # of chips?
Total = ? MB

(c) In this part, assume the data cache you designed in Part (a) has
a Block Size = 32 B. On a cache miss, you want to fill up the cache in
2 DRAM read cycles.

c.1 (2 point) How wide does the datapath between the DRAM and your
data cache have to be in order to achieve our goal of filling the cache
in 2 DRAM read cycles?

The path has to be 32B/2 = 16 bytes or 128 bits wide.

c.2 (3 points) What is the minimum number of DRAM chips (256K x 8)
you need for the main memory and what is the minimum memory
size?

The DRAM chips are 256K x 8. In order to form the 128 b i t
wide path, we need 128/8 = 16 chips.

Total memory: (256 KB/ chip) x 16 chips = 4 MB

PROBLEM 4: MICROCODE

In this problem we will consider a very simple computer
architecture design. This design has no general purpose registers,
and all components are connected together via a common bus. For
this question, you will have to write some simple programs. The
instructions for this processor are very simple, being of the form:

Dest <- Source (i.e. "NPC <- AOUT")

Where Dest is one of {NPC, AOP, A, B, ADDR, WRITE} and Source i s
one of {PC, AOUT, READ, IMM}. If Source is IMM, there is some
integer immediate data associated along with it. In this case, the
instruction is written:

Dest <- Immediate (i.e. "A <- 5")

The physical architecture of the microprocessor looks like this:

IMM PC ALU MEM

PC NPC AOUT A B AOPIMM

R
E

A
D

W
R

IT
E

A
D

D
R

In this architecture, there are no general purpose registers.
Registers are emulated using a reserved section of main memory.
Address 0 corresponds to register 0, address 1 to register 1, etc...

Program flow is controlled using the PC and NPC registers. The
PC of the current instruction can be read from the PC register. If a
value is written to the NPC register, the next instruction will be
fetched from that address, effecting a jump. In a particular cycle, if
no value is written to the NPC register, the PC advances and
executes the next sequential instruction.

The ALU operation is controlled by the AOP register. AOP may be
one of {ADD, SUB, SEQ}, which are all defined constants which may
be used as the Immediate of an instruction. The two operands to the
ALU are the A and B registers, and the result of the ALU operation
can be read from AOUT. ADD is defined as A+B, SUB is defined as A -
B, while SEQ is defined as 1 if (A == B), else 0 if (A != B).

The memory is a simple synchronous word-addressed one-cycle
memory. For a read operation, the address is first placed in the
ADDR register, then a data value can be read from the READ register.
For a write, first place the address in the ADDR register, and then
write the data to the WRITE register.

Immediate data values may be in the range -32 to 31 (6 b i t s
signed 2's complement.) This system uses a shared instruct ion/data
memory model. Large immediate values may be in-lined in the code
and accessed using PC-relative addressing.

Show below are two examples, the first one very simple and the
second one more complex.

example 1) Write out code equivalent to the MIPS instruction "addi
r6, r5, #12"
AOP <- ADD Get the ALU ready for addition.
ADDR <- 5 Get the memory ready to read 'register' 5.
A <- READ Read the memory and store in register A.
B <- 1 2 Load the immediate constant 12.
ADDR <- 1 Get ready to write-back to 'register' 6.
WRITE<- AOUT Write the ALU result to memory.

example 2) Write out code equivalent to the MIPS instruction "addi
r6, r5, #-142"

AOP <- ADD Get the ALU ready for addition.
A <- PC Load the PC to calculate effective address.
B <- 1 1 13-2 = 11.(Data at line 13, PC from line 2)
ADDR <- AOUT Save the address of the in-line immediate.
B <- READ Load the in-line immediate data.
ADDR <- 5 Get ready to load 'register' 5.
A <- READ Read the input data from memory.
ADDR <- 6 Get ready to save the result.
WRITE <- AOUT Save the result of the ALU add.
A <- PC Now we need to skip over line #13, because
B <- 4 it is immediate data and won't execute.
NPC <- AOUT So use 14-10 = 4 added to the PC and jump!
- 1 4 2 Data for the ALU add. Don't try to execute!

Below are four incomplete code fragments. Fill in all the missing
blanks, INCLUDING COMMENTS.

a) (5 points) Write out code equivalent to the MIPS instruction
"sub r10, r11, r12"

AOP <- Get the ALU ready to do a subtract.
ADDR <- 1 1 Get ready to read memory location 11.
A <- READ Read the memory into register A.
ADDR <-
B <- READ Read the memory into register B.

< -
WRITE <- AOUT Write the result to memory.

b) (5 points) Write out code equivalent to the MIPS instruction
"jalr r10"

AOP <- ADD Ready the ALU for adding a PC offset.
A <- PC Return address is relative to the PC.
B <-
ADDR <- 3 1 Get ready to write to 'register' 31.

< -
< -

NPC <- READ Jump to the new address.

c) (5 points) Write out code equivalent to the MIPS instruction
"lw r4, 16(r3)"

AOP <- ADD Ready the ALU for calculating the address.
ADDR <- 3 Get ready to load address 3.
A <- READ Read in the register.
B <- 1 6 Our immediate offset.

< - Save the calculated address.
B <- 0 Set up the ALU to be a temporary register.

< - Load the data from memory.
ADDR <- 4 Get ready to save at memory location 4.

< - Save our result into main memory.

d) (10 points) Write out code equivalent to the MIPS instruction
"bne r4, r5, -4"
0. <<< If r4 != r5, this branch will infinite loop >>>
AOP <- SEQ Ready to ALU for the comparison
ADDR <- 4 Ready to read memory 4
A <- READ Read location 4
ADDR <- 5 Ready to read memory 5
B <- READ Read location 5
A <-
B <-
AOP <- ADD No more comparison tests
A <- AOUT
B <- PC Compute offsets from here.

< -
< -

NPC <- AOUT And jump!
- 9 !=, jump to line 1, 1-10 = -9.
6 ==, jump to line 16, 16-10 = 6.

<<< If r4 = r5, continue execution here >>>

THE END!!

