CS152
COMPUTER ARCHITECTURE AND ENGINEERING

EXAMINATION #2

DISCUSSION SECTION TIME:

PROBLEM NUMBER SCORE

#1
#2

#3

#4

TOTAL SCORE

NOTE: Please show your work CLEARLY for all problems. | hope you
enjoy the test!

PROBLEM 1: PIPELINING/HAZARDS

For all five parts of this question, assume that we are using the
five-stage pipelined MIPS machine described in the CS152 textbook.

a. (6 points) The following is some code from Mr. Oza’s Nut Factory.
Assume that the pipelined datapath has NO FORWARDING. Find the
register hazards in the following code. Enter your answers in the
table on the next page. Also, for each hazard that you find, classify
the hazard (under “Hazard Type” in the table below) into one of the
following three types:

(1). The write register of the instruction in the EXECUTION
stage is the same as the read register of the instruction in the
INSTRUCTION DECODE stage.

(2). The write register of the instruction in the MEMORY stage
is the same as the read register of the instruction in the
INSTRUCTION DECODE stage.

(3). The write register of the instruction in the WRITE-BACK
stage is the same as the read register of the instruction in the
INSTRUCTION DECODE stage

When designating the two instructions between which there is a
hazard (under Instruction#1 and Instruction #2 below), use the
number to the left of the instruction. When designating the type of
hazard, use the number corresponding to one of the three hazards
listed above.

add $3,$1,%$2
lw $1,0($4)
and $5,$3,%4
and $6,$1,%$2
or $1,$3,%6
sw $1,4(%4)
w $2,4(%4)
sub $3,%$5,%6

i S o

Instruction #1 | Instruction #2 | Register(s) | Hazard Type

b. (5 points) Ben “The Hazard Buster” Bitdiddle (remember him?)
says that instruction 7 might not load the value stored by
instruction 6. Is this true? Why or why not?

c. (6 points) Rewrite the code above WITHOUT CHANGING ITS EFFECT
so that it has the fewest number of nop instructions. Again, assume
there is NO FORWARDING.

d. (4 points) Pipeline the following circuit for maximum throughput
by adding pipeline registers (by drawing vertical lines on one or
more wires) at appropriate places. Use as few pipeline registers as
possible. On each component, the number in parentheses is that
component’s latency. THERE ARE NO WIRE DELAYS OR OTHER DELAYS
IN THE CIRCUIT. None of the components are clocked; therefore, you

have to make sure that, for each component, both inputs arrive at the
same time.

— -
—9p| (1) (1)
| . /
- (2)
P
(2)
>
@
—p| (2) | (D

e. (4 points) What is the lowest possible cycle time for the
pipelined version of the circuit above? How can you figure it out
without actually pipelining the circuit?

PROBLEM 2: BUSES

a. (6 points) Name three traditionally classified buses and their
features:

b. (16 points) We want to compare the maximum bandwidth for a
synchronous and an asynchronous bus.

- The synchronous bus has a clock cycle time of 30ns, and each bus
transmission takes 2 clock cycles.

- The asynchronous bus requires 35ns per handshake.

- The data portion of both buses is 32 bits wide.

- Addresses are 32 bits(word) long but the returning data are 64
bits(double word) long.

Find the bandwidth for each bus when performing one-double-word
READS from a 100ns memory (64 bits data).

Calculations for Synchronous bus (4 points):

Synchronous Bus bandwidth (4 points):
(Megabytes/Second)

Calculations for Asynchronous bus (4 points):

Asynchronous Bus bandwidth (4 points):
(Megabytes/Second)

c. (3 points) Which of two buses scales better with technology
changes when used as 1/0O bus? Why?

PROBLEM 3: MEMORY SYSTEM DESIGN

In this problem, you are going to design a memory system for a
computer. One thing we want you to learn from this class is how to

solve a BIG problem by solving a series of little problems.

have divided this problem into multiple sub-problems.

So we

- Write Through

Physical Addressed | g
CPU - Data Cache

. Store Buffer —

Main
Memory

First here are some numbers and equations you may need to solve

this problem:

Virtual Memory Page Size = 4K Byte

DRAM Chips Available:
Size: 4 Megabit = 256K words x 8-bit
Read Access Time = Write Access Time = 50ns
Read Cycle Time = Write Cycle Time = 100ns

Data cache Options Hit Time | Miss Rate | Miss Penalty
J-byte Direct-Mapped 1 cycle 8% 4 cycles
L-byte 2-way Set Associative |1 cycle 4% 6 cycles
M-byte 4-way Set Associative |1 cycle 2% 8 cycles

Note: J, L, M are values you need to pick in Part (a) of this problem

Queuing Theory Review:
Utilization = Request Rate / Service Rate
Average Q Length = Utilization / (1 - Utilization)

Probability of Overflow of a N-entry Q = (Utilization)"

Part (a) Physically Addressed Data Cache (12 points)

Part (a): The first thing you need to pick is the configuration of the
write-through, physically addressed, data cache. Your options are:

» J-byte Direct Mapped
 L-byte 2-Way Set Associative
« M-byte 4-Way Set Associative

(a.1) (2 points): What are J, L, and M in order to index these caches
with the virtual address?

a.2 (6 points): Assume Load instructions have a CPI of 1.2 if they hit
in the data cache and if they miss, they have a CPI of (1.2 + Miss
Penalty). All other instructions have a CPI of 1.2. Furthermore
assume 20% of the instructions are loads. What is the machine’s CPI
for each of the 3 cache options (keep 3 decimal points for your
answer, example: 1.xxx)? Which cache should you use if CPIl is the
only criterion?

a.3 (4 points) Assume if the direct-mapped cache is used, the
machine cycle time is 20ns. If the 2-way cache is used, cycle time
IS 22ns. 4-way cache is use, cycle time is 24ns. What is the
average time per instruction for each option and what cache should
you use?

Part (b) Store Buffer Design (8 points)

How many entries?
Main
cPY Memory
T Store Buffer T
Store Frequency? DRAM Service Rate?

(b) In this part, you need to pick the length of the store buffer. For
this part of the problem we will assume (do NOT use the result of
Part(a) for this part):

Machine’s CPI = 1.3 Cycle Time = 20 ns

Percentage Instructions that are stores = 15 %

b.1 (1 point): What is the store frequency with respect to time?

b.2 (1 point): What is the maximum rate at which DRAM can service
store requests? Assume that the DRAM Write Cycle Time = 100ns.

b.3 (2 points) What is the utilization and mean Q length based on
gueuing theory?

b.4 (1 point) What is the probability of overflow if the queue has two
entries?

b.5 (3 points) What is the minimum number of entries the Store
Buffer needs to have to lower the probability of buffer overflow to
less than 4%?

10

Part (c) Main Memory Design (5 points)

Data Cache Main
Block Size=32B | L Memory
N=7 #of chips?
Total =?MB

(c) In this part, assume the data cache you designed in Part (a) has
a Block Size = 32 B. On a cache miss, you want to fill up the cache in
2 DRAM read cycles.

c.1l (2 point) How wide does the datapath between the DRAM and your
data cache have to be in order to achieve our goal of filling the cache
in 2 DRAM read cycles?

c.2 (3 points) What is the minimum number of DRAM chips (256K x 8)
you need for the main memory and what is the minimum memory
size?

11

PROBLEM 4: MICROCODE

In this problem we will consider a very simple computer
architecture design. This design has no general purpose registers,
and all components are connected together via a common bus. For
this question, you will have to write some simple programs. The
instructions for this processor are very simple, being of the form:

Dest <- Source (i.,e. "NPC <- AOUT")

Where Dest is one of {NPC, AOP, A, B, ADDR, WRITE} and Source is
one of {PC, AOUT, READ, IMM}. If Source is IMM, there is some
integer immediate data associated along with it. In this case, the
instruction is written:

Dest <- Immediate (i.,e. "A <-5")

The physical architecture of the microprocessor looks like this:

IMM PC ALU MEM
z 5 3
IMM PC NPC AOUT A B AOP % 7%

In this architecture, there are no general purpose registers.
Registers are emulated using a reserved section of main memory.
Address 0 corresponds to register O, address 1 to register 1, etc...

Program flow is controlled using the PC and NPC registers. The
PC of the current instruction can be read from the PC register. If a
value is written to the NPC register, the next instruction will be
fetched from that address, effecting a jump. In a particular cycle, if
no value is written to the NPC register, the PC advances and
executes the next sequential instruction.

12

The ALU operation is controlled by the AOP register. AOP may be
one of {ADD, SUB, SEQ}, which are all defined constants which may
be used as the Immediate of an instruction. The two operands to the
ALU are the A and B registers, and the result of the ALU operation
can be read from AOUT. ADD is defined as A+B, SUB is defined as A -
B, while SEQ is defined as 1 if (A == B), else 0 if (A = B).

The memory is a simple synchronous word-addressed one-cycle
memory. For a read operation, the address is first placed in the
ADDR register, then a data value can be read from the READ register.
For a write, first place the address in the ADDR register, and then
write the data to the WRITE register.

Immediate data values may be in the range -32 to 31 (6 bits
signed 2's complement.) This system uses a shared instruction/data
memory model. Large immediate values may be in-lined in the code
and accessed using PC-relative addressing.

Show below are two examples, the first one very simple and the
second one more complex.

example 1) Write out code equivalent to the MIPS instruction "addi
ré, r5, #12"

AOP <- ADD Get the ALU ready for addition.

ADDR <- 5 Get the memory ready to read 'register' 5.
A <- READ Read the memory and store in register A.
B <- 12 Load the immediate constant 12.

ADDR < - 1 Get ready to write-back to 'register’ 6.
WRITE<- AOUT [Write the ALU result to memory.

13

example 2) Write out code equivalent to the MIPS instruction "addi
ré, r5, #-142"

AOP <- ADD Get the ALU ready for addition.

A <- PC Load the PC to calculate effective address.
B <- 11 13-2 = 11.(Data at line 13, PC from line 2)
ADDR <- AOUT Save the address of the in-line immediate.
B <- READ Load the in-line immediate data.

ADDR <- 5 Get ready to load 'register’ 5.

A <- READ Read the input data from memory.

ADDR <- 6 Get ready to save the result.

WRITE <- AOUT Save the result of the ALU add.

A <- PC Now we need to skip over line #13, because
B <- 4 it is immediate data and won't execute.
NPC <- AOUT So use 14-10 = 4 added to the PC and jump!
-142 Data for the ALU add. Don't try to execute!

Below are four incomplete code fragments. Fill in all the missing
blanks, INCLUDING COMMENTS.

a) (5 points) Write out code equivalent to the MIPS instruction
"sub r10, rl1, r12"

AOP Get the ALU ready to do a subtract.

ADDR 11 Get ready to read memory location
11.

A READ Read the memory into register A.

ADDR

B READ Read the memory into register B.

WRITE AOUT Write the result to memory.

14

b) (5 points) Write out code equivalent to the MIPS instruction

"jalr r10"

AOP ADD Ready the ALU for adding a PC
offset.

A PC Return address is relative to the PC.

B

ADDR 31 Get ready to write to '‘register’ 31.

NPC READ Jump to the new address.

c) (5 points) Write out code equivalent to the MIPS instruction

"lw rd4, 16(r3)"

AOP ADD Ready the ALU for calculating the address.

ADDR 3 Get ready to load address 3.

A READ Read in the register.

B 16 Our immediate offset.
Save the calculated address.

B 0 Set up the ALU to be a temporary register.
Load the data from memory.

ADDR 4 Get ready to save at memory location 4.
Save our result into main memory.

15

d) (10 points) Write out

"bne r4, r5,

0. <<< If r4 1= 15, this

4"

code equivalent to the MIPS instruction

branch will infinite loop >>>

AOP SEQ Ready to ALU for the comparison

ADDR 4 Ready to read memory 4

A READ Read location 4

ADDR 5 Ready to read memory 5

B READ Read location 5

A

B

AOP ADD No more comparison tests

A AOUT

B PC Compute offsets from here.

NPC AOUT And jump!

-9 I=, jump to line 1, 1-10 = -9.

6 ==, jump to line 16, 16-10 = 6.
<<< If r4 = r5, continue execution here >>>

THE END!!

16

