
SOLUTION

CS 152 Computer Architecture and Engineering
CS 252 Graduate Computer Architecture

Midterm #1
February 26th, 2018

Professor Krste Asanovic
Name:______________________

I am taking CS152 / CS252

This is a closed book, closed notes exam.

80 Minutes. 19 pages.

Notes:
● Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
● ​Please carefully state any assumptions you make.
● ​Please write your name on every page in the exam.
● You must not discuss an exam’s contents with other students who have not

taken the exam. If you have inadvertently been exposed to an exam prior to
taking it, you must tell the instructor or TA.

● You will receive no credit for selecting multiple-choice answers without giving
explanations if the instructions ask you to explain your choice.

 CS152 CS252 Your Points

Question 1 25 points 30 points
Question 2 25 points 25 points
Question 3 25 points 25 points
Question 4 25 points 30 points

Total 100 points 110 points

Name: ____________________________

Question 1: Microtagged Cache [25 + 5 points]

In this problem, we explore ​microtagging​, a technique to reduce the access time of set-associative
caches. Recall that for associative caches, the tag check must be completed before load results are
returned to the CPU, because the result of the tag check determines which cache way is selected.
Consequently, the tag check is often on the critical path.

The time to perform the tag check (and, thus, way selection) is determined in large part by the size of the
tags. We can speed up way selection by checking only a subset of the tag—called a microtag—and using
the results of this comparison to select the appropriate cache way. Of course, the full tag check must also
occur to determine if the cache access is a hit or a miss, but this comparison proceeds in parallel with way
selection. We store the remainder of the full tags separately from the microtag array.

We will consider the impact of microtagging on a 4-way set-associative 4KiB data cache with 16-byte
lines. Addresses are 32 bits. Microtags are 2 bits. A row in each tag memory array contains one tag and
two status(valid and dirty) bits. Figure 1-1, below, shows the modified tag comparison and driver
hardware in the microtagged cache:

1

Name: ____________________________

Table 1-1 shows the delays for each cache component:

Component Delay equation (ps) Delay (ps)
Decoder 20×(# of index bits) + 100 220
Memory array 20×log​2 ​(# of rows) +

40×log​2 ​(# of bits in a row) + 100
Tag Microtag Data
398 300 500

Comparator 20×(# of tag bits) + 50 Tag Microtag
450 90

4-to-1 MUX 50×log​2 N + 100 200
2-input gate (AND) 50
4-input gate (OR) 100

Table 1-1: Cache component delays

A. (4 points)​ Which bits of each 22-bit full tag should be used as the 2-bit microtag?
Explain the reason briefly.

The lowest 2 bits of each tag. Microtags should be different across ways in each set and
these bits are more likely to differ between cache lines being accessed at the same time.

+2 points for the correct answer
+2 points for the correct reason

B. (5 points)​ Assume data must be available in one cycle on a cache hit, while full tag
checks do not need to complete in one cycle. What is the critical path and the cycle time?

decoder → microtag array → comparators → 2 ANDs → 4:1 Mux
= 220 + 380 + 90 + 2*50 + 200 = 990 ps
decoder → data array → 2 4:1 Muxes
= 220 + 500 + 2*200 = 1120 ps

+1 for the delay of the tag arrays
+1 for the delay of the data arrays
+1 for the delay of the utag arrays
+1 for the correct critical path
+1 for the correct cycle time

2

Name: ____________________________

C. (5 points)​ Assume the page size is 4 KiB. Can aliases occur in Figure 1? If not, explain

why not. If aliases can happen, can you suggest an efficient solution to prevent them?
Explain your reasoning carefully.
Aliasing cannot occur as the index is taken from the page offset

+2 for the correct answer
+3 for the correct reason

D. (5 points)​ How does the miss rate of this cache compare with a direct-mapped cache of
the same capacity and line size? Explain your reasoning.

The same. utags are only two bits for 4 ways. This cache has the same number of conflict
misses as the direct-mapped does.

(+5 points only for the correct answer and the correct reason)
(No partial credits for this question)

3

Name: ____________________________

E. (6 points)​ We consider increasing the number of bits in microtags to 6 bits. How does
this change the hit time, miss rate, and the miss penalty? Explain your reasoning
carefully.

 Increase / Decrease / No effect?

Hit time (2 points) Increase because it will increase ​the delay of the data read​.
Cycle time = max(200 + 340 + 170 + 2*50 + 200 = 1010 ps, 920 ps) +
200ps
(1 point) Increase because it will increase the delay of microtag comparison.
(1 point) No effect because the critical path is still in the data array.
(1 point) No effect because the critical path is in the full tag check.
(0 points) Otherwise

Miss rate (2 points) Decreases, fewer conflict misses.

Miss penalty (2 points) No effect because it does not change the block size and the outer
memory

4

Name: ____________________________

F. (CS252 only) +5 points ​You decide to implement way prediction for the instruction
cache instead of microtags. Figure 5-1 shows how way prediction works.

Figure 5-1: Way Prediction FSM

On a cache access, the prediction is used to route the data. If it is incorrect, there will be a delay
as the correct way is accessed. If the desired data is not resident in the cache, it is like a normal
cache miss.

For a given memory access, the way predictor chooses the most-recently-used way in the set. For
a 4-way set-associative 4KiB instruction cache with 16-byte lines, under what scenarios do you
expect this predictor to work well and under what scenarios do you expect the way predictor to
mispredict?

Good: contiguous instruction working set (e.g., small loop) fits in 1KiB
Bad: branches frequently jumping into the same set (offset is multiple of 1KiB) (any many other
examples where instruction working set is >1KiB or has a lot of conflict misses in 1KiB
direct-mapped cache).

5

Name: ____________________________

Question 2: Superscalar In-order Processor with
Microtagged Caches [25 points]

Your best friend, Klay Curry, designed a two-way superscalar in-order processor using the
microtagged cache in Question 1 as follows:

Figure 2-1: Two-way superscalar in-order pipeline with microtagged caches

Two instructions are fetched every cycle and both instructions are issued at the same time when
there are no pipeline hazards. If either instruction cannot move forward, the following
instructions are also stalled. Thus, writebacks are always in-order.

There are two functional units available in this pipeline: the ALU unit and the MEM unit. ALU
and branch instructions can be issued to either unit.

On the other hand, memory instructions can only be issued to the MEM unit. Memory addresses
are calculated by the ALU in the X stage and the memory is accessed in the following M1 stage.
Note that caches can be read in one cycle because full tag checks are postponed until the M2
stage. Stores can only be written at the end of the M2 stage after full tags are checked. Ignore
structural hazards between loads and stores in the data cache array.

6

Name: ____________________________

Assume there is perfect branch prediction. Also, ​the pipeline is fully bypassed.​ Each bypass
source has been numbered in the figure (BP1 ~ BP8). Bypass paths connect their sources to the
inputs of the X registers.

In this question, assume there are no cache misses and no exceptions other than page faults.
Page faults from instruction accesses are detected in the D stage and page faults from data
accesses are detected in the M2 stage.

A. (5 points)​ Explain how page-fault exceptions can be made precise in this pipeline.

(5 points) All exceptions must be handled in ​the M2 stage​ before the data cache is
written.
(+3 points) Correctly handle page faults in the D stage
(+3 points) Correctly handle page faults in the M2 stage
(1 point) Exceptions must be handled at a commit point, not mentioning where it is.
(1 point) Exceptions must be handled in the WB stage before the register file is written.

B. (10 points) ​Now, Klay Curry is benchmarking their design with a simple integer
vector-vector add:

for (i = 0 ; i < N ; i++)
c[i] = a[i] + b[i]
Loop: lw x2, 0(x1) # load a[i]
 lw x4, 0(x3) # load b[i]
 add x5, x2, x4 # c[i] = a[i] + b[i]
 sw x5, 0(x6) # store c[i]
 addi x1, x1, 4 # bump pointer
 addi x3, x3, 4 # bump pointer
 addi x6, x6, 4 # bump pointer
 addi x7, x7, 1 # i++
 bne x7, x8, Loop # x8 holds N

Figure 2-2: Code snippet for vector-vector add

Fill out the pipeline diagram (Figure 2-3) when you execute the assembly code in Figure 2-2.
Specify which bypasses are used for each instruction. Note a single instruction might use more
than one bypass path. What is the CPI for this code?

7

Name: ____________________________

(F: Fetch, D: Decode, X: Execute, M1: Memory, M2: Tag Check, W: writeback)

CPI = 8/9
(1 point for partially completed answers)
(-1 point each for wrong answers)
(-1 point with no CPI)

8

Name: ____________________________

 9

Name: ____________________________

C. (CS152 only)​ ​(10 points) ​Now, Klay Curry has a compiler that unrolls loops and
reschedule instructions. Assume the loop operates on an even number of elements in the
vectors.

Loop: lw x2, 0(x1) # load a[i]
 addi x1, x1, 8 # bump pointer a
 lw x4, 0(x3) # load b[i]
 addi x3, x3, 8 # bump pointer b
 lw x8, -4(x1) # load a[i+1]
 add x5, x2, x4 # c[i] = a[i] + b[i]
 lw x9, -4(x3) # load b[i+1]
 addi x7, x7, 2 # i+=2
 sw x5, 0(x6) # store c[i]
 addi x10, x8, x9 # c[i+1] = a[i+1] + b[i+1]
 sw x10, 4(x6) # store c[i+1]
 add x6, x6, 8 # bump pointer c
 bne x7, x11, Loop # x11 holds N

Figure 2-4: Loop unrolling and rescheduling

Fill out the pipeline diagram (Figure 2.5). Also, specify what bypasses are used for each
instruction. What is the CPI with this optimization? What is the speedup over Figure 2-2?
(F: Fetch, D: Decode, X: Execute, M1: memory access, M2: tag check, W: writeback)

CPI=9/13
Speed up = old CPI / new CPI = 104 / 81
(1 point for partially completed answers)
(-0.5 point each for wrong answers)
(-0.5 point with no CPI)
(-0.5 point with wrong speed up)

10

Name: ____________________________

 11

Name: ____________________________

D. (CS252 only)​ Draymond Durant suggests a new architecture (Figure 2-6) to efficiently
execute the following floating-point vector-vector add (Figure 2-7).

Figure 2-6: Simple decoupled machine

Loop: fld f0, 0(x1) # load a[i]
 fld f1, 0(x2) # load b[i]
 fadd f2, f0, f1 # c[i] = a[i] + b[i]
 fsd f2, 0(x3) # store c[i]
 addi x1, x1, 4 # bump pointer
 addi x2, x2, 4 # bump pointer
 addi x3, x3, 4 # bump pointer
 addi x4, x4, 1 # i++
 bne x4, x5, Loop # x5 holds N

Figure 2-7: Floating-point vector vector add

In Figure 2-6, all instructions flow through the integer pipeline. However, floating-point
instructions issue microops (load data, compute, or store data) to the floating-point pipeline.
Instructions following a floating-point instruction can execute without waiting for the microop to
complete.

Figure 2-8: Traditional pipeline with floating-point units

12

Name: ____________________________

(CS252 only) (5 points) ​Will the floating-point vector-vector-add execute more efficiently in the
decoupled machine in Figure 2-6 or in the traditional pipeline in Figure 2-8? Explain your
reasoning.

Yes, address computation runs ahead of data computation

(CS252 only) (5 points) ​Can you make the new architecture handle page-fault exceptions
precisely? Explain.

Yes. Check for page faults in X stage of address generation before creating microps to send to
floating-point unit. Then no following integer instructions will commit out-of-order with respect
to floating-point load/store page faults.

13

Name: ____________________________

Question 3: Micro-Programming [25 points]

For this problem, you will implement a new copy-if-non-zero (CPN) instruction. The new
instruction has the following format.

CPN (rd), (rs1), rs2

This instruction will copy a word from the address given by register rs1 to the address given by
register rd if the value in register rs2 is non-zero.

if Reg[rs2] != 0 then Mem[Reg[rd]] ← Mem[Reg[rs1]]

Fill out the table on the next page with the microcode for CPN. Use don’t cares (*) for fields
where it is safe to use don’t cares. Study the hardware description well, and make sure all your
microinstructions are legal.

Please comment your code clearly. If the pseudo-code for a line does not fit in the space
provided, or if you have additional comments, you may write in the margins as long as you do it
neatly.

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a microbranch
to FETCH0 as discussed).

+1 for each correct pseudocode (7 total)
+2 for each correct set of signals (14 total)
+2 points for use of don’t care
+2 points for no side effects

Alternative correct answers:

➢ Load rs2 into both A and B, use A+B for branch comparison
➢ Merge branch comparison with MA <- Reg[rs1] (ALU does not need to be

enabled for branch comparison)

14

Name: ____________________________

15

Name: ____________________________

Question 4: Virtual Memory [25 + 5 points]

A. (15 points) ​The table on the next page shows the contents of a portion of physical
memory used for page tables. Assume the system uses 64-bit words, 16-byte pages,
three-level page tables, and a fully associative two-entry TLB with LRU eviction. Each
stage of the page table uses a single bit index. At the beginning, the TLB is empty and the
free pages list contains page numbers 0x16, 0x5, 0x18, 0x12, and 0x19 in order from
first-to-be-allocated to last-to-be-allocated. For the following virtual memory address
trace, indicate whether the access results in a TLB hit, a page table hit, or a page fault,
and give the translated physical address. Fill out the memory table and the TLB with its
final state. Assume that the page table base register is set to 0 and TLB fills in from left to
right. The entries in the page table are the full physical addresses of the start of the page,
not just the PPN​.

+1 point each for TLB hit/page hit/page fault (4 total)
+1 point each for Physical address (4 total)
+1 point each for correct memory entry (3 total)
+1 point each for correct TLB entry (2 total)
+1 point for correct TLB order (1 total)
+1 point for no extra memory entry (1 total)

Virtual Address TLB hit/page hit/page fault Physical Address

0x58 Page hit 0x178

0x10 Page fault 0x160

0x50 TLB hit 0x170

0x60 Page fault 0x180

0x18 Page hit 0x168

16

Name: ____________________________

Memory
Addr Contents (Phys Addr)

0x00 0x020

0x08 0x040

0x10

0x18

0x20 0x070

0x28 0x090

0x30

0x38

0x40 0x080

0x48 0x050

0x50 0x180

0x58

0x60

0x68

0x70 0x110

0x78 0x160

0x80 0x150

0x88 0x170

0x90

0x98 0x130

TLB

VPN 0x01 0x06

PPN 0x16 0x18

17

Name: ____________________________

B. (5 points)​ You are asked to design a virtually indexed, physically tagged cache. A page is

4096 bytes. The cache must have 128 lines of 64 bytes each. What associativity must the
cache have in order for there to be no aliasing?

2​7​ * 2​6​ = 2​13​ = 2​12​ * 2​1

2-way set-associative

5 for correct answer
1 for non-minimal answer

C. (5 points)​ Assume the cache is direct-mapped and an inclusive L2 is used to detect
aliasing. If the L2 detects an alias for the physical address 0x80001468, which sets in the
L1 could contain the aliased entry? The sets are indexed starting from zero. Give your
answers in decimal.

(0x80001468 % 4096) / 64 = 0x468 >> 6 = 0x13 = 17

128 / 2 = 64

17 + 64 = 81

Sets 17 and 81 must be checked.

5 for correct answer
4 if setup correct but numbers wrong
2 if only one number given

18

Name: ____________________________

D. (CS252 only)​ ​(5 points) ​What are the advantages and the disadvantages of hashed page
tables?

Pros: Reduced access time. Bounded page table size.
Cons: Increased page faults due to collisions.

+2.5 for correct advantage
+2.5 for correct disadvantage

19

