
 1

University of California, Berkeley

College of Engineering

Computer Science Division EECS

Spring 2001

John Kubiatowicz

Midterm I
SOLUTIONS

March 1, 2001
CS152 Computer Architecture and Engineering

Your Name:

SID Number:

Discussion Section:

Problem Possible Score

1 20

2 20

3 30

4 30

Total

 2

[This page left for π]

3.141592653589793238462643383279502884197169399375105820974944

 3

Problem 1: Performance
Problem 1a:
Name the three principle components of runtime that we discussed in class. How do they
combine to yield runtime?

Instruction count, Cycles per instruction (CPI), and clock period (or frequency)

Runtime = InstCount × CPI × clockperiod = InstCount × CPI ÷ clock frequency

Now, you have analyzed a benchmark that runs on your company’s processor. This processor
runs at 300MHz and has the following characteristics:

Instruction Type Frequency (%) Cycles
Arithmetic and logical 35 1

Load and Store 25 2
Branches 25 3

Floating Point 15 5

Your company is considering a cheaper, lower-performance version of the processor. Their plan
is to remove some of the floating-point hardware to reduce the die size.

The wafer on which the chip is produced has a diameter of 10cm, a cost of $2000, and a defect
rate of 1 / (cm2). The manufacturing process has an 80% wafer yield and a value of 2 for α.
Here are some equations that you may find useful:

The current procesor has a die size of 12mm × 12mm. The new chip has a die size of 10mm
×10mm, and floating point instructions will take 13 cycles to execute.

Problem 1b:
What is the CPI and MIPS rating of the original processor?

CPI = (0.35×1) + (0.25×2) + (0.25×3) + (0.15×5) = 2.35
MIPS = 300MhZ÷ CPI = 300MhZ/2.35 = 127.66 MIPS

� �
area die2

diameterwafer

area die

diameter/2wafer
 dies/wafer

�
��

�
��

�
2

��
�
	

�
�

�
�

���
area dieareaunit per defects

1yield wafer yield die

 4

Problem 1c:
What is the CPI and MIPS rating of the new processor?

CPI = (0.35×1) + (0.25×2) + (0.25×3) + (0.15×13) = 3.55
MIPS = 300MhZ ÷ 3.55 = 84.51

Problem 1d:
What is the original cost per (working) processor?

� �

36
122

100
12

2
100

/
22

2

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
	

�
�

�
�

�
π

π
waferdie � � 27.0

2
2.11

180.0
22

�

�

�

�

� �
��

�

dieYield

 � � 76.205
27.036

2000
)(/

�
�

�
�

�
dieYieldwaferdie

waferCost
dieCost

Problem 1e:
What is the new cost per (working) processor?

� �

56
102

100
10

2
100

/
22

2

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
	

�
�

�
�

�
π

π
waferdie � � 36.0

2
0.11

180.0
22

�

�

�

�

� �
��

�

dieYield

 � � 21.99
36.056

2000
)(/

�
�

�
�

�
dieYieldwaferdie

waferCost
dieCost

Problem 1f:
Assume that we are considering the other direction of improving the original processor by
increasing the speed of floating point. What is the best possible speedup that we could get, and
what would the CPI and MIPS rating be of the new processor?

The easiest thing to do is use Amdahl’s law:
)1(

1

)1(

1
f

n
f

f
speedup

	
�

�	
� as n→∞.

(i.e. speeding up floating-point really well). In this case, f is the fraction of time normally
devoted to floating point (in time!). So, f=CPIfloat/CPI=(0.15×5)÷2.35 = 0.319

Max speedup = (1-0.319)-1= 1.47
CPI computed with “zerocycle” floating-point instructions: 2.35-(0.15×5) = 1.6
MIPS = 300/1.6 = 187.5

 5

Problem 2: Parallel Prefix

Assume the following characteristics for NAND gates:

 Input load: 120fF,
Internal delay: TPlh=0.3ns, TPhl=0.6ns,

 Load-Dependent delay: TPlhf=.0020ns, TPhlf=.0021ns

Problem 2a:
Suppose that we construct an XOR, as follows:

Compute the standard parameters for the linear delay models for this complex gate, assuming the
parameters given above for the NAND gate. Assume that a wire doubles the input capacitance
of the gate that it is attached to:

A Input Capacitance: 240fF Load-dependent Delays:
B Input Capacitance: 240fF TPAYlhf: 0.0020 ns/fF
 TPAYhlf: 0.0021 ns/fF
 TPBYlhf: 0.0020 ns/fF
 TPBYhlf: 0.0021 ns/fF

Maximum Internal delays for A⇒ Y:
TPAYlh:

Critical path goes through 3 gates. Low-to-high on output implies high-to-low on inputs to last
gate, which implies low-to-high on input A. Note that the two internal nodes are driven, so we
multiply capacitance by 2:

TPAYlh = 0.3ns+(2)(240fF)(0.0020ns/fF) + 0.6ns + (2)(120fF)(0.0021ns/fF) + 0.3ns = 2.664ns

TPAYhl:

High-to-low on output implies low-to-high on inputs to last gate, which implies high-to-low on
input A.

TPAYhl = 0.6ns + (2)(240fF)(0.0021ns/fF) + 0.3ns + (2)(120fF)(0.0020ns/fF) + 0.6ns = 2.988

A
B

Y

 6

An important operation that shows up in many different contexts is the parallel prefix circuit
using XOR as the combining operation. This circuit takes as input a sequence of bits, such as:
[I0, I1, I2, I3,] then outputs a new sequence, [O0, O1, O2, O3,…] which is the same length. The
output bits are related to the input bits in the following fashion:

[O0=I0, O1=(I0⊕ I1), O2=(I0⊕ I1⊕ I2), O3=(I0⊕ I1⊕ I2⊕ I3), …]

Each successive output bit is the XOR of the new input bit and the previous output bit.

The smallest parallel-prefix circuit has 2
inputs and two outputs. If this is intended to
be part of a larger parallel prefix circuit, then
we need “carry in” and “carry out” terminals
such as shown to the right:

Problem 2b:
Using your answers from problem (2a),
compute:

Input capacitance: Load Dependent Delays for both outputs:
 (as many parameters as appropriate):

I0: 480 fF
 I1: 240 fF Let X be with I0 or I1 and Y be O0 or O1:

 Cdown: 480 fF TPXYlh: 0.0020 ns/fF
TPXYhl: 0.0021 ns/fF

Internal delays for the critical path (identify the critical path and compute delays):

.
Critical path is from inputs to O1. The slow transition is high-to-low on internal node, so set
Cdown to make this always go in that direction

TPI0O1hl = TPhlxor+(TPhlfxor)(2)(CAxor) + TPhlxor = 2.988 + (0.0021)(2)(240) + 2.988=6.984ns
TPI0O1lh = TPhlxor+(TPhlfxor)(2)(CAxor) + TPlhxor = 2.988 + (0.0021)(2)(240) + 2.664=6.660ns

O1 O0

I1 I0

Cup

Cdown

 7

Problem 2c:
Now, put these 2-input blocks together to produce a 4-input block that takes I0, I1, I2, and I3, and
Cdown and produces: O0 = I0 ⊕ Cdown
 O1 = I1⊕ I0 ⊕ Cdown
 O2 = I2⊕ I1⊕ I0 ⊕ Cdown
 O3 = I3⊕ I2⊕ I1⊕ I0 ⊕ Cdown
 Cup = I3⊕ I2⊕ I1⊕ I0
Your goal is to minimize the output delay of each block.

Using only blocks from part 2b:

Compute the input capacitance for each input:

I0: 480, I1: 240, I2: 480, I3: 240, Cdown: 480

Identify the critical path of your circuit and compute the unloaded delay for this path.

Critical path from I0 to O3. Arrange so that two internal nodes go from high-to-low:

TPI0O3hl = 3�TPhlxor+2�[TPhlfxor�(2)�(2)�(240)] = 12.996 ns
TPI0O3lh = 2�TPhlxor+2�[TPhlfxor�(2)�(2)�(240)] +TPlhxor= 12.672 ns

X

O1

I0I1I3 I2

O0

Cup

O3
O2

Cdown

 8

Problem 2d:
Finally, show how the 4 input prefix circuit can be used as a building block to produce a 16-
element prefix circuit that minimizes gate reuse and which has minimal delay. What is the
critical path and how many XOR gates are in it?

Hint: this is very similar to a carry-lookahead adder.

The critical path is from I0 up through the central logic and back through the Cdown of the last
stage to O14 or O15.

Adding this up, we get: 2 + 3 + 2 = 7 XOR gates

Problem 2e:

How many XOR gates are in the critical path of a 64-bit parallel-prefix circuit?

This adds one more level of blocks. Tracing the first input to last output, we note that we have 2
for each level up, 3 for the top level, and 2 for each level down: 2 + 2 + 3 + 2 + 2 = 11 xor
gates.

I3 I2 I1 I0

o3 o2 o1 o0
cdncup

I3 I2 I1 I0

o3 o2 o1 o0
cdncup

I3 I2 I1 I0

o3 o2 o1 o0
cdncup

I3 I2 I1 I0

o3 o2 o1 o0
cdncup

I3 I2 I1 I0

o3 o2 o1 o0
cdncup

Cup

I3 I2 I1 I0I15 I14 I13 I12 I11 I10 I9 I8 I7 I6 I5 I4

o15o14o13o12 o3 o2 o1 o0
o7 o6 o5 o4o11o10o9 o8

Cdown

 9

Problem 3: PI

This problem is not as bad as it looks. 3a and 3b can be done without
understanding the math.

The book “A History of π” by Petr Beckmann is an amusing look at the history and politics
behind the number PI. Among other things, this book shows several series that produce PI. One
in particular is:

239
1

arctan
5
1

arctan4
4

���
π

In this problem, we will compute part of this series:

...
7

1
5

1
3

111
arctan

753
�

�
�

�
�

�
��

xxxxx

Fortunately for us, each term of the series is smaller that the previous one by at least
2

1

x
. So,

this means that each term of �
�
�

	

�

5
1

arctan is smaller by at least 04.0
5
1

2

��
�
�

	

�

and each term of

�
�
�

	

�

239
1

arctan is smaller by 5
2

108.1
239
1

����
�
�

	

�

. Thus, the series converges really quickly.

The secret to making this work is to note that each term in the series for PI is of the form
1/big number. Further, a lot of these numbers are related to each other. Consider:

x

A
1

0 � ‘
1

1 0
0

A

x
B ��

2
0

31

1

x

A

x
A ��

33

1 1
31

A

x
B �

�
�

2
1

52

1

x

A

x
A ��

55

1 2
52

A

x
B �

�
�

So, ...
1

arctan
210
���� BBB

x

Thus, all we need to do is figure out how to divide one number by another number for an
arbitrary number of decimal places.

Suppose that we have a procedure that produces an infinite “stream” of digits for the series
A0. Then, we can input that stream as an input to the divide algorithm that produces A1
(since it is A0 divided by some integer like 25 or (239)2. Further, we can send the stream of
digits for A1 to produce A2 and B1. Etc. That is our trick.

 10

Recall how divide (in base 10) works The following shows a
division of 1 by 23:

Suppose we had a procedure that produced each of the digits
(zeros) in the dividend, one at a time. Consider the remainders
as integers from the current decimal point. So, for instance, we
have the remainders 1, 10, 100, 80, 110, 180, etc. At each
stage, we multiply by ten, add the incoming digit (zero in the
example), then

This could be combined with the current remainder but
multiplying the remainder by 10, adding the new digit (which is
zero in this case), then seeing how much the result divides the
answer.

Here is complete pseudo code for computing one of the streams
(Note: we have fixed a couple of the typos):

Stream(digitnum,incoming,oddnum,sign,xsquared,termID,maxtermID) {
 ARemainder = A_REMARRAY[termID];
 ARemainder = ARemainder × 10 + incoming;

 ; This is a quotient/remainder operation
 (ADigit, ARemainder) = ARemainder / xsquared;
 A_REMARRAY[termID] = ARemainder;

 BRemainder = B_REMARRAY[termID];
 BRemainder = BRemainder × 10 + Adigit;
 (BDigit, BRemainder) = BRemainder / oddnum;
 B_REMARRAY[termID] = BRemainder;

 AddInDigit(BDigit, digitnum, sign);

 If ((termID = maxtermID) && (ADigit != 0)) {
 A_REMARRAY[termID+1] = 0;
 B_REMARRAY[termID+1] = 0; /* This was missing originally */
 maxtermID++;
 }

 If (termID < maxtermID) {
 MaxtermID =
 Stream(digitnum, ADigit,(oddnum+2),-sign,
 xsquared, (termID+1), maxtermID);
 }
 return maxtermID; /* This was missing originally */
}

04347826.0

00161.0

00180.0

0092.0

0110.0

069.0

080.0

92.0

00.1

0.0

0.1

0

1

00000000.123
R

em
ainders

 11

Problem 3a:
Write MIPS assembly for this pseudo code. Make sure to adhere to MIPS conventions. Assume
that A_REMARRAY[] and B_REMARRAY[] are word arrays that are addressed via constants
(assume that you can use the la pseudo instruction to load their addresses into registers. Also,
assume that there are 7 argument registers ($a0 - $a6) for the sake of this problem. Note that
AddInDigit is a procedure call.

Stream: subiu $sp, $sp, 36 ; 7 args, 1 ret addr, 1 temp (ADigit)
 sw $ra, 36($sp) ; Save return address
 sw $a0, 32($sp) ; Save $a0
 <... etc ...> ; Save $a1 - $a5
 sw $a6, 8($sp) ; Save $a6

 sll $t0, $a5, 2 ; Convert termID to word index
 la $t1, A_REMARRAY
 addu $t1, $t1, $t0 ; address of ARemainder
 lw $t2, 0($t1) ; Get ARemainder
 mul $t2, $t2, 10 ; x 10 (pseudo instruction)
 addu $t2, $t2, $a1
 divu $t2, $a4
 mfhi $t2 ; New remainder
 sw $t2, 0($t1) ; Save it into array
 mflo $t3
 sw $t3, 4($sp) ; Save ADigit for later

 la $t1, B_REMARRAY ;
 addu $t1, $t1, $t0 ; address of BRemainder
 lw $t2, 0($t1) ; Get BRemainder
 mul $t2, $t2, 10 ; x10 (pseudo-instruction)
 addu $t2, $t2, $t3 ; Add in ADigit
 divu $t2, $a2
 mfhi $t2 ; New BRemainder
 sw $t2, 0($t1) ; Save back into array

 move $a2, $a3 ; sign (third arg)
 move $a1, $a0 ; digitnum (second arg)
 mflo $a0 ; Get BDigit
 jal AddInDigit
 lw $a0, 32($sp) ; Restore digitnum (arg 1)
 lw $a1, 4($sp) ; Restore ADigit to $a1
 lw $a2, 24($sp) ; restore oddnum
 lw $a3, 20($sp) ; restore sign
 lw $a4, 16($sp) ; restore xsquared
 lw $a5, 12($sp) ; restore termID
 lw $v0, 8($sp) ; restore maxTermID (will return)

 bne $a5, $v0, finalcheck ; termId != maxTermID
 beq $t3, $r0, finalcheck ; ADigit == 0
 sll $t1, $a5, 2
 la $t1, A_REMARRAY
 addu $t1, $t1, $t0 ; address of A_REMARRAY[termID]
 sw $r0, 4($t1) ; store zero at A_REMARRAY[termID+1]
 la $t1, B_REMARRAY
 addu $t1, $t1, $t0 ; address of B_REMARRAY[termID]
 sw $r0, 4($t1) ; store zero at B_REMARRAY[termID+1]
 addiu $v0, $v0, 1 ; maxterm++

finalcheck: blt $a5, $v0, return ; Check termID < maxtermID (pseudo-op)
 addiu $a2, $a2, 2 ; oddnum+2
 subu $a3, $r0, $a3 ; sign = -sign
 addiu $a5, $a5, 1 ; termID+1
 jal stream

return: lw $ra, 36($sp)
 addiu $sp, $sp, 36 ; restore stack
 jr $ra ; return

 12

Problem 3b:
The procedure AddInDigit takes 3 arguments. A digit (a number from 0 to 9), a digit position
(digitnum), and a sign. Assume that we have an infinite precision decimal number in memory,
one digit per byte, starting at address FINALVALUE. Assume that “digitnum” specifies a byte
offset from this address at which we need to add (sign =1) or subtract (sign=-1) the incoming
digit. Write this procedure. Assume that the result must be still in decimal. Thus, if you add the
digit at FINALVALUE[digitnum] and it overflows (is bigger than 9), then you must carry to
the next most significant digit (at digitnum-1). Same is true of subtract (when sign = -1).

Again assuming no delay slots:

AddInDigit: la $t0, FINALVALUE ; Get address of array
 addu $t0, $t0, $a1 ; Address of current digit

loopit: lb $t1, 0($t0) ; get digit
 slt $t2, $a2, $r0 ; Sign negative?
 bne $t2, $r0, handleneg ; Yup. Go deal with it

 add $t1, $t1, $a0 ; Add in new digit
 slti $t2, $t1, 10 ; Carry needed?
 bne $t2, lastupdate ; Nope. Store digit and exit
 subi $t1, $t1, 10 ; subtract extra 10 from digit
 sw $t1, 0($t0) ; Store updated value
 subi $t0, $t0, 1 ; Go to next most significant digit
 addi $a0, $r0, 1 ; Next digit: 1
 j loopit ; go handle carry

handleneg: subu $t1, $t1, $a0 ; Subtract digit
 slti $t2, $t1, 0 ; result less than 0?
 beq $t2, lastupdate ; Nope. Store digit and exit
 addi $t1, $t1, 10 ; Correct digit
 sw $t1, 0($t0) ; Store updated value
 subi $t0, $t0, 1 ; Go to next most significant digit
 addi $a0, $r0, 1 ; Next digit: 1
 j loopit ; go handle borrow

lastupdate: sw $t1, 0($t0) ; write last digit
 jr $ra ; return

‘

 13

Problem 3c:
Explain the initialization of the A_REMVALUE[] and B_REMVALUE[] arrays if we were

going to compute �
�
�

�
�
� �

5
1

arctan4 . What is the purpose of the termID and maxtermID

parameters?

We are just going to fold the 4 into our calculations. If we let the 4 be part of the A0

computation, then every other term will be multiplied by 4 automatically (since A1 depends on

A0, etc). Thus, we simply have an outer loop that produces the digits of
5
4

one at a time and feed

them to “stream”. So, we will use A_REMVALUE[] and B_REMVALUE[] for all terms beyond
the first one. Since each new remainder gets zeroed as it is needed, we merely have to set the
first element of each array to zero. Thus, let A_REMVALUE[0] = 0 and B_REMVALUE[0]=0.

The variable termID tracks which term of the series we are currently working on. Since the first

term (the
x
1

term) is a little special (It is not derived from other terms by dividing by x2, we will

let termID=0 be the
33

1

x
term, termID=1 be the

55

1

x
 etc. The maxtermID is the maximum

term that we have produced nonzero values for up to now. Note that in the stages of the design,
almost all terms are zero, hence we start termID=maxtermID=0

Problem 3d:
Explain the initialization of the FINALVALUE array:

Each digit of the FINALVALUE array must be initialized to zero before it is used. Since we are
walking though the “answer” one digit at a time, we can choose to initialize this digit before we
use it. (I.e. when we are working on the 10ths place, we don’t care what is in the 100ths or
1000ths place, since we know to ignore it.

Problem 3e:

Write pseudo-code to compute �
�
�

�
�
� �

5
1

arctan4 using stream(). Assume that the initialization in

(3c) and (3d) are accomplished..

FINALVALUE[0]=0 ; Set ones place to zero
FINALVALUE[1]=8 ; This is 4/5
A_REMVALUE[0]=B_REMVALUE[0] = 0 ; Start with 1 term

; Handle first digit (10ths place)
maxtermID = stream(1,8,3,-1,25,0,0)
for (digitnum=2; true; digitnum=digitnum+2) {

FINALVALUE[digitnum] = 0;
 maxtermID=stream(digitnum,0,3,-1,25,0,maxtermID);
}

 14

[This page intentionally left blank]

 15

Problem 4: New instructions for a multi-cycle data path

The Multi-Cycle datapath developed in class and the book is shown above. In class, we
developed an assembly language for microcode. It is included here for reference:

Field Name Values For Field Function of Field
Add ALU Adds
Sub ALU subtracts
Func ALU does function code (Inst[5:0])

ALU

Or ALU does logical OR
PC PC ⇒ 1st ALU input

SRC1
rs R[rs] ⇒ 1st ALU input
4 4 ⇒ 2nd ALU input
rt R[rt] ⇒ 2nd ALU input

Extend sign ext imm16 (Inst[15:0]) ⇒ 2nd ALU input
Extend0 zero ext imm16 (Inst[15:0]) ⇒ 2nd ALU input

SRC2

ExtShft 2nd ALU input = sign extended imm16 << 2
rd-ALU ALUout ⇒ R[rd]
rt-ALU ALUout ⇒ R[rt] ALU Dest
rt-Mem Mem input ⇒ R[rt]
Read-PC Read Memory using the PC for the address
Read-ALU Read Memory using the ALUout register for the address Memory
Write-ALU Write Memory using the ALUout register for the address

MemReg IR Mem input ⇒ IR
ALU ALU value ⇒ PCibm

PC Write
ALUoutCond If ALU Zero is true, then ALUout ⇒ PC

Seq Go to next sequential microinstruction
Fetch Go to the first microinstruction Sequence

Dispatch Dispatch using ROM

In class, we made our multicycle machine support the following six MIPS instructions:

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr

32
A

L
U

32
32

ALUOp

ALU
Control

32

IRWr

Instruction R
eg

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

32

Zero

Zero
PCWrCond PCSrc

32

IorD

M
em

 D
ata R

eg

A
L

U
 O

ut

B

A

 16

op | rs | rt | rd | shamt | funct = MEM[PC]
op | rs | rt | Imm16 = MEM[PC]

INST Register Transfers
ADDU R[rd] ← R[rs] + R[rt]; PC ← PC + 4
SUBU R[rd] ← R[rs] - R[rt]; PC ← PC + 4
ORI R[rt] ← R[rs] + zero_ext(Imm16); PC ← PC + 4
LW R[rt] ← MEM[R[rs] + sign_ext(Imm16)]; PC ← PC + 4
SW MEM[R[rs] + sign_ext(Imm16)] ← R[rs]; PC ← PC + 4
BEQ if (R[rs] == R[rt]) then PC ← PC + 4 + sign_ext(Imm16) || 00
 else PC ← PC + 4

For your reference, here is the microcode for two of the 6 MIPS instructions:

 Label ALU SRC1 SRC2 ALUDest Memory MemReg PCWrite Sequence
 Fetch Add PC 4 ReadPC IR ALU Seq
 Dispatch Add PC ExtShft Dispatch

 RType Func rs rt Seq
 rd-ALU Fetch
 BEQ Sub rs rt ALUoutCond Fetch

In this problem, we are going to add four new instructions to this data path:

jal <const> ⇒ PC ← zero_ext(Instr[25:0]) || 00
 R[31] ← PC + 4
add $rd, $rs, $rt ⇒ if (R[rs]+ R[rt] doesn’t overflow) then
 R[rd] ← R[rs] + R[rt]
 PC←PC+4
 Else
 EPC←PC
 Cause←12
 PC←0x80000080
mfc0 $rd, $rt if ($rt == 13) then
 R[rd] ←Cause
 Else if ($rt == 14) then
 R[rd] ←EPC
 PC←PC+4

compmul $rd, $rs, $rt ⇒ R[rd]=(R[rs]×R[rt]) – (R[rs+1]×R[rt+1])
 R[rd+1]= (R[rs]×R[rt])+(R[rs+1]×R[rt+1])

 PC←PC+4
This math was a typo. The real way to compute complex multiply is:

compmul $rd, $rs, $rt ⇒ R[rd]=(R[rs]×R[rt]) – (R[rs+1]×R[rt+1])
 R[rd+1]= (R[rs]×R[rt+1])+(R[rs+1]×R[rt])

 PC←PC+4
We will give the solution with the original spec (for fairness)

 17

1. The jal instruction is familiar to you from the normal MIPS instruction set.
2. The add instruction is a normal add except that it causes an overflow exception if there is

overflow. You need to implement the EPC (error PC) and Cause registers. Just assume that
EPC gets the PC of the bad instruction and Cause gets the number 12.

3. The mfc0 instruction is used to get the EPC and Cause values into normal registers
4. The compmul instruction does a complex multiply. It is assumed that the registers rd, rs,

and rt are even registers and that the two source complex values are in R[rs], R[rs+1] (real,
imaginary) and R[rt], R[rt+1] (real, imaginary), and that the results are put into R[rd] and
R[rd+1] (real,imaginary).

Problem 4a: (2 pts)
How wide are microinstructions in the original datapath (answer in bits and show some work!)?

2 + 1 + 3 + 2 + 2 + 1 + 2 + 2 = 15 bits wide

The trickiest part of this computation is the PC Write field. We have to remember to represent the “do
nothing” option, which means that there are actually three different values for the PC Write field.

Problem 4b: (4 points)
Draw a block diagram of a microcontroller that will support the new instructions (it will be
slightly different than that required for the original instructions). Include sequencing hardware,
the dispatch ROM, the microcode ROM, and decode blocks to turn the fields of the microcode
into control signals. Make sure to show all of the control signals coming from somewhere. (hint:
The PCWr, PCWrCond, and PCSrc signals must come out of a block connected to thePCWrite
field of the microinstruction).

2 points were given for drawing a decent microcontroller for the old datapath. 1 point was given if the
branching (exception) mechanism was implemented with a mux. Another point was given for showing
some new control signals (EPCWrite is the most notable).

 18

Problem 4c: (15 points)
Describe/sketch the modifications needed to the datapath for the new instructions (jal, add,
mfc0, and compmul). Asume that the original datapath had only enough functionality to
implement the original 6 instructions. Try to add as little additional hardware as possible. Make
sure that you are very clear about your changes.

jal: 3 points

1) Expand PCSrc mux to take in jump address.

Alternatively, you could have modified the extender to
take in 26 bits and have additional functionality. This
solution requires more hardware though, and you
would also need to either create a way for SRC1 to be
zero or draw a wire from the output of the <<2 shifter
to the PCSrc mux.

2) Expand RegDst mux to take in constant 31.

3) Expand MemtoReg mux to take in PC.

This was the most commonly omitted part. Part of the
reason it looks okay to omit at first is that SRC1 can be the
PC. However, if we used this, we would need a way to force
SRC2 to be zero. Furthermore, jal would require 4
instructions instead of just 3.

add: 4 points

1) Give ALU an overflow output:.

2) Add EPC and Cause registers.

The given spec doesn’t let Cause take on
values other than 12, so it was okay to
just omit the cause register and use a
hardcoded 12.

 19

3) Expand PCSrc mux to take in 0x80000080.

mfc0: 4 points

1) 13 and 14 only differ by 1 bit, so just use a mux
with the LSB of $rt as the selector to choose
between Cause and EPC. Any other values of
$rt are dontcares.

2) Expand MemtoReg mux to take in the CauseOrEPC.

Alternatively, some students expanded SRC1 to be able
to have the value of CauseOrEPC, but this has the
disadvantage that you need to create a way for SRC2
to be forced to zero, and mfc0 would then require 4
instead of 3 microinstructions.

compmul: 4 points
Correction: The math in the original test was wrong. The spec given on the exam was:
compmul $rd, $rs, $rt => R[rd] � (R[rs]*R[rt]) – (R[rs+1]*R[rt+1])
 R[rd+1] � (R[rs]*R[rt]) + (R[rs+1]*R[rt+1])
 PC � PC + 4

But anyways, this error makes the problem a bit simpler,
because with the buggy problem we need to calculate only
two products instead of four, so this solution will go with
the original instructions.

1) Add 32-bit multiplication capability. Either add
the multiply operation to the ALU or put down a
multiplier that takes in the same inputs as the ALU.

 20

2) Add registers to store products.

You need at least two. Well, actually if a
multiply-accumulate unit is used instead
of a multiplier, you could go with just
one, but that would make things
complicated.

3) Expand ALUSelA and ALUSelB muxes
to take in these products.

4) Add capability to read rs+1 and rt+1.

Some students did this with 5-bit adders and
muxes. That’s fine, but you don’t need that
much hardware because the registers are
guaranteed to be even.

5) Add capability to read rd+1.

 21

Problem 4d:
Describe changes to the microinstruction assembly language for these new instructions. How
wide are your microinstructions now?

ALU: no changes 4 values � 4 values (0 new bits)
SRC1: 1 new value: Product1 2 values � 3 values (1 new bit)
SRC2: 1 new value: Product2 5 values � 6 values (0 new bits)
ALU Dest: 3 new values: 31-PC

rd-CauseorEPC, rd+1-ALU 4 values � 7 values (1 new bit)
Memory: no changes 3 values � 3 values (0 new bits)
MemReg: no changes 2 values � 2 values (0 new bits)
PCWrite: 2 new values: JumpAddr, Kernel 3 values � 5 values (1 new bit)
Sequence: 1 new value: SeqCanException 3 values � 4 values (0 new bits)
*RsandRt: 2 new values: RegEven, RegOdd 0 values � 2 values (1 new bit)
*EPCCause: 2 new values: EPCCauseWr, (do nothing) 0 values � 2 values (1 new bit)
*Products: 3 new values: Product1, Product2,

(do nothing) 0 values � 3 values (2 new bits)

15 + 0 + 1 + 0 + 1 + 0 + 0 + 1 + 0 + 1 + 1 + 2 = 22 bits wide

Answers may vary a lot, e.g. you may have:
 Added a multiply value to the ALU field.
 Altered the extender so that SRC2 would require another value, say Extend26.
 Added a zero value to SRC1.
 Added a zero value to SRC2.
 Put SeqCanException in a field by itself.
 Made separate fields for the Cause and EPC registers.

Or done even some other things differently that would still be correct if they matched your answer in 4b,
4d, and 4f.

4 points were given for having most of the proper microcode changes.

1 point was given for summing to some number for a new microinstruction width, and knowing that 1 new
value does not equate to 1 new bit.

 22

Problem 4e: 4 points
Write complete microcode for the new instructions. Include the Fetch and Dispatch
microinstructions. If any of the microcode for the original instructions must change, explain how
(Hint: since the original instructions did not use R[rd] as a register input, you must make sure
that your changes do not mess up the original instructions).

Label ALU SRC1 SRC2 ALU Dest Memory MemReg PCWrite Sequence RsandRt CauseEPC Products

Fetch Add PC 4 ReadPC IR ALU Seq

Dispatch Add PC ExtShift Dispatch RegEven

Jal 31-PC JumpAddr Fetch

Add Add rs rt SeqCanException

 rd-ALU Fetch

Exception Sub PC 4 Kernel Fetch CauseEPCWr

Mfc0 rd-CauseorEPC Fetch

Compmul rs rt Seq RegOdd Product1

 rs rt Seq Product2

 Sub Product1 Product2 Seq

 Add Product1 Product2 rd-ALU Seq

 rd+1-ALU Fetch

1 point was given for each mostly correct instruction.

Many students neglected to copy down the Fetch and Dispatch microinstructions.

Some students did jal in 4 microinstructions instead of 3. This should be okay if it matches your answer
in part 4d.

There should be a separate microinstruction for exception, rather than an add microinstruction that can
do two different things.

The EPC is generated by subtracting the new PC – 4.

Conversely, mfc0 should not be done by two different microinstruction paths, because then you would
need to lay down more branching hardware in the microcontroller.

For compmul, many students didn’t specify where to store the products.

