
 1

University of California, Berkeley

College of Engineering

Computer Science Division EECS

Spring 2001

John Kubiatowicz

Midterm I
March 1, 2001

CS152 Computer Architecture and Engineering

Your Name:

SID Number:

Discussion Section:

Problem Possible Score

1 20

2 20

3 30

4 30

Total

 2

[This page left for π]

3.141592653589793238462643383279502884197169399375105820974944

 3

Problem 1: Performance
Problem 1a:
Name the three principle components of runtime that we discussed in class. How do they
combine to yield runtime?

Now, you have analyzed a benchmark that runs on your company’s processor. This processor
runs at 300MHz and has the following characteristics:

Instruction Type Frequency (%) Cycles
Arithmetic and logical 35 1

Load and Store 25 2
Branches 25 3

Floating Point 15 5

Your company is considering a cheaper, lower-performance version of the processor. Their plan
is to remove some of the floating-point hardware to reduce the die size.

The wafer on which the chip is produced has a diameter of 10cm, a cost of $2000, and a defect
rate of 1 / (cm2). The manufacturing process has an 80% wafer yield and a value of 2 for α.
Here are some equations that you may find useful:

The current procesor has a die size of 12mm × 12mm. The new chip has a die size of 10mm
×10mm, and floating point instructions will take 13 cycles to execute.

Problem 1b:
What is the CPI and MIPS rating of the original processor?

� �
area die2

diameterwafer

area die

diameter/2wafer
 dies/wafer

�
��

�
��

�
2

��
�
	

�
�

�
�

���
area dieareaunit per defects

1yield wafer yield die

 4

Problem 1c:
What is the CPI and MIPS rating of the new processor?

Problem 1d:
What is the original cost per (working) processor?

Problem 1e:
What is the new cost per (working) processor?

Problem 1f:
Assume that we are considering the other direction of improving the original processor by
increasing the speed of floating point. What is the best possible speedup that we could get, and
what would the CPI and MIPS rating be of the new processor?

 5

Problem 2: Parallel Prefix

Assume the following characteristics for NAND gates:

 Input load: 120fF,
Internal delay: TPlh=0.3ns, TPhl=0.6ns,

 Load-Dependent delay: TPlhf=.0020ns, TPhlf=.0021ns

Problem 2a:
Suppose that we construct an XOR, as follows:

Compute the standard parameters for the linear delay models for this complex gate, assuming the
parameters given above for the NAND gate. Assume that a wire doubles the input capacitance
of the gate that it is attached to:

A Input Capacitance: Load-dependent Delays:
B Input Capacitance: TPAYlhf:
 TPAYhlf:
 TPBYlhf:
 TPBYhlf:

Maximum Internal delays for A⇒ Y:
TPAYlh:

TPAYhl:

A
B

Y

 6

An important operation that shows up in many different contexts is the parallel prefix circuit
using XOR as the combining operation. This circuit takes as input a sequence of bits, such as:
[I0, I1, I2, I3,] then outputs a new sequence, [O0, O1, O2, O3,…] which is the same length. The
output bits are related to the input bits in the following fashion:

[O0=I0, O1=(I0⊕ I1), O2=(I0⊕ I1⊕ I2), O3=(I0⊕ I1⊕ I2⊕ I3), …]

Each successive output bit is the XOR of the new input bit and the previous output bit.

The smallest parallel-prefix circuit has 2
inputs and two outputs. If this is intended to
be part of a larger parallel prefix circuit, then
we need “carry in” and “carry out” terminals
such as shown to the right:

Problem 2b:
Using your answers from problem (2a),
compute:

Input capacitance: Load Dependent Delays for both outputs:
 (as many parameters as appropriate):

I0:
 I1:
 Cdown:

Internal delays for the critical path (identify the critical path and compute delays):

.

O1 O0

I1 I0

Cup

Cdown

 7

Problem 2c:
Now, put these 2-input blocks together to produce a 4-input block that takes I0, I1, I2, and I3, and
Cdown and produces: O0 = I0 ⊕ Cdown
 O1 = I1⊕ I0 ⊕ Cdown
 O2 = I2⊕ I1⊕ I0 ⊕ Cdown
 O3 = I3⊕ I2⊕ I1⊕ I0 ⊕ Cdown
 Cup = I3⊕ I2⊕ I1⊕ I0
Your goal is to minimize the output delay of each block.

Compute the input capacitance for each input:

Identify the critical path of your circuit and compute the unloaded delay for this path.

 8

Problem 2d:
Finally, show how the 4 input prefix circuit can be used as a building block to produce a 16-
element prefix circuit that minimizes gate reuse and which has minimal delay. What is the
critical path and how many XOR gates are in it?

Hint: this is very similar to a carry-lookahead adder.

Problem 2e:

How many XOR gates are in the critical path of a 64-bit parallel-prefix circuit?

 9

Problem 3: PI

This problem is not as bad as it looks. 3a and 3b can be done without
understanding the math.

The book “A History of π” by Petr Beckmann is an amusing look at the history and politics
behind the number PI. Among other things, this book shows several series that produce PI. One
in particular is:

239
1

arctan
5
1

arctan4
4

���
π

In this problem, we will compute part of this series:

...
7

1
5

1
3

111
arctan

753
�

�
�

�
�

�
��

xxxxx

Fortunately for us, each term of the series is smaller that the previous one by at least
2

1

x
. So,

this means that each term of �
�
�

	

�

5
1

arctan is smaller by at least 04.0
5
1

2

��
�
�

	

�

and each term of

�
�
�

	

�

239
1

arctan is smaller by 5
2

108.1
239
1

����
�
�

	

�

. Thus, the series converges really quickly.

The secret to making this work is to note that each term in the series for PI is of the form
1/big number. Further, a lot of these numbers are related to each other. Consider:

x

A
1

0 � ‘
1

1 0
0

A

x
B ��

2
0

31

1

x

A

x
A ��

33

1 1
31

A

x
B �

�
�

2
1

52

1

x

A

x
A ��

55
1 1

52

A
x

B �
�

�

So, ...
1

arctan
210
���� BBB

x

Thus, all we need to do is figure out how to divide one number by another number for an
arbitrary number of decimal places.

Suppose that we have a procedure that produces an infinite “stream” of digits for the series
A0. Then, we can input that stream as an input to the divide algorithm that produces A1
(since it is A0 divided by some integer like 25 or (239)2. Further, we can send the stream of
digits for A1 to produce A2 and B1. Etc. That is our trick.

 10

Recall how divide (in base 10) works The following shows a
division of 1 by 23:

Suppose we had a procedure that produced each of the digits
(zeros) in the dividend, one at a time. Consider the remainders
as integers from the current decimal point. So, for instance, we
have the remainders 1, 10, 100, 80, 110, 180, etc. At each
stage, we multiply by ten, add the incoming digit (zero in the
example), then

This could be combined with the current remainder but
multiplying the remainder by 10, adding the new digit (which is
zero in this case), then seeing how much the result divides the
answer.

Here is complete pseudo code for computing one of the
streams:

Stream(digitnum,incoming,oddnum,sign,xsquared,termID,maxtermID) {
 ARemainder = A_REMARRAY[termID];
 ARemainder = ARemainder × 10 + incoming;

 ; This is a quotient/remainder operation
 (ADigit, ARemainder) = ARemainder / xsquared;
 A_REMARRAY[termID] = ARemainder;

 BRemainder = B_REMARRAY[termID];
 BRemainder = BRemainder × 10 + Adigit;
 (BDigit, BRemainder) = BRemainder / oddnum;
 B_REMARRAY[termID] = BRemainder;

 AddInDigit(BDigit, digitnum, sign);

 If ((termID = maxtermID) && (ADigit != 0)) {
 A_REMARRAY[termID+1] = 0;
 maxtermID++;
 }

 If (termID < maxtermID) {
 Stream(digitnum, ADigit,(oddnum+2),-sign, xsquared, (termID+1),
 maxtermID);
 }
}

04347826.0

00161.0

00180.0

0092.0

0110.0

069.0

080.0

92.0

00.1

0.0

0.1

0

1

00000000.123

R
em

ainders

 11

Problem 3a:
Write MIPS assembly for this pseudo code. Make sure to adhere to MIPS conventions. Assume
that A_REMARRAY[] and B_REMARRAY[] are word arrays that are addressed via constants
(assume that you can use the la pseudo instruction to load their addresses into registers. Also,
assume that there are 7 argument registers ($a0 - $a6) for the sake of this problem. Note that
AddInDigit is a procedure call.

 12

Problem 3b:
The procedure AddInDigit takes 3 arguments. A digit (a number from 0 to 9), a digit position
(digitnum), and a sign. Assume that we have an infinite precision decimal number in memory,
one digit per byte, starting at address FINALVALUE. Assume that “digitnum” specifies a byte
offset from this address at which we need to add (sign =1) or subtract (sign=-1) the incoming
digit. Write this procedure. Assume that the result must be still in decimal. Thus, if you add the
digit at FINALVALUE[digitnum] and it overflows (is bigger than 9), then you must carry to
the next most significant digit (at digitnum-1). Same is true of subtract (when sign = -1).

 13

Problem 3c:
Explain the initialization of the A_REMVALUE[] and B_REMVALUE[] arrays if we were

going to compute �
�
�

�
�
� �

5
1

arctan4 . What is the purpose of the termID and maxtermID

parameters?

Problem 3d:
Explain the initialization of the FINALVALUE array:

Problem 3e:

Write pseudo-code to compute �
�
�

�
�
� �

5
1

arctan4 using stream(). Assume that the initialization in

(3c) and (3d) are accomplished..

 14

[This page intentionally left blank]

 15

Problem 4: New instructions for a multi-cycle data path

The Multi-Cycle datapath developed in class and the book is shown above. In class, we
developed an assembly language for microcode. It is included here for reference:

Field Name Values For Field Function of Field
Add ALU Adds
Sub ALU subtracts
Func ALU does function code (Inst[5:0])

ALU

Or ALU does logical OR
PC PC ⇒ 1st ALU input

SRC1
rs R[rs] ⇒ 1st ALU input
4 4 ⇒ 2nd ALU input
rt R[rt] ⇒ 2nd ALU input

Extend sign ext imm16 (Inst[15:0]) ⇒ 2nd ALU input
Extend0 zero ext imm16 (Inst[15:0]) ⇒ 2nd ALU input

SRC2

ExtShft 2nd ALU input = sign extended imm16 << 2
rd-ALU ALUout ⇒ R[rd]
rt-ALU ALUout ⇒ R[rt] ALU Dest
rt-Mem Mem input ⇒ R[rt]
Read-PC Read Memory using the PC for the address
Read-ALU Read Memory using the ALUout register for the address Memory
Write-ALU Write Memory using the ALUout register for the address

MemReg IR Mem input ⇒ IR
ALU ALU value ⇒ PCibm

PC Write
ALUoutCond If ALU Zero is true, then ALUout ⇒ PC

Seq Go to next sequential microinstruction
Fetch Go to the first microinstruction Sequence

Dispatch Dispatch using ROM

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr

32
A

L
U

32
32

ALUOp

ALU
Control

32

IRWr

Instruction R
eg

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

32

Zero

Zero
PCWrCond PCSrc

32

IorD

M
em

 D
ata R

eg

A
L

U
 O

ut

B

A

 16

In class, we made our multicycle machine support the following six MIPS instructions:

op | rs | rt | rd | shamt | funct = MEM[PC]
op | rs | rt | Imm16 = MEM[PC]

INST Register Transfers
ADDU R[rd] ← R[rs] + R[rt]; PC ← PC + 4
SUBU R[rd] ← R[rs] - R[rt]; PC ← PC + 4
ORI R[rt] ← R[rs] + zero_ext(Imm16); PC ← PC + 4
LW R[rt] ← MEM[R[rs] + sign_ext(Imm16)]; PC ← PC + 4
SW MEM[R[rs] + sign_ext(Imm16)] ← R[rs]; PC ← PC + 4
BEQ if (R[rs] == R[rt]) then PC ← PC + 4 + sign_ext(Imm16) || 00
 else PC ← PC + 4

For your reference, here is the microcode for two of the 6 MIPS instructions:

 Label ALU SRC1 SRC2 ALUDest Memory MemReg PCWrite Sequence
 Fetch Add PC 4 ReadPC IR ALU Seq
 Dispatch Add PC ExtShft Dispatch

 RType Func rs rt Seq
 rd-ALU Fetch
 BEQ Sub rs rt ALUoutCond Fetch

In this problem, we are going to add four new instructions to this data path:

jal <const> ⇒ PC ← zero_ext(Instr[25:0]) ||00
 R[31] ← PC + 4

add $rd, $rs, $rt ⇒ if (R[rs]+ R[rt] doesn’t overflow) then
 R[rd] ← R[rs] + R[rt]
 PC←PC+4
 Else
 EPC←PC
 Cause←12
 PC←0x80000080

mfc0 $rd, $rt if ($rt == 13) then
 R[rd] ←Cause
 Else if ($rt == 14) then
 R[rd] ←EPC
 PC←PC+4

compmul $rd, $rs, $rt ⇒ R[rd]=(R[rs]×R[rt]) – (R[rs+1]×R[rt+1])
 R[rd+1]= (R[rs]×R[rt])+(R[rs+1]×R[rt+1])

 PC←PC+4
This math was a typo. The real way to compute complex multiply is:

compmul $rd, $rs, $rt ⇒ R[rd]=(R[rs]×R[rt]) – (R[rs+1]×R[rt+1])
 R[rd+1]= (R[rs]×R[rt+1])+(R[rs+1]×R[rt])

 PC←PC+4

 17

1. The jal instruction is familiar to you from the normal MIPS instruction set.
2. The add instruction is a normal add except that it causes an overflow exception if there is

overflow. You need to implement the EPC (error PC) and Cause registers. Just assume that
EPC gets the PC of the bad instruction and Cause gets the number 12.

3. The mfc0 instruction is used to get the EPC and Cause values into normal registers
4. The compmul instruction does a complex multiply. It is assumed that the registers rd, rs,

and rt are even registers and that the two source complex values are in R[rs], R[rs+1] (real,
imaginary) and R[rt], R[rt+1] (real, imaginary), and that the results are put into R[rd] and
R[rd+1] (real,imaginary).

Problem 4a:
How wide are microinstructions in the original datapath (answer in bits and show some work!)?

Problem 4b:
Draw a block diagram of a microcontroller that will support the new instructions (it will be
slightly different than that required for the original instructions). Include sequencing hardware,
the dispatch ROM, the microcode ROM, and decode blocks to turn the fields of the microcode
into control signals. Make sure to show all of the control signals coming from somewhere. (hint:
The PCWr, PCWrCond, and PCSrc signals must come out of a block connected to thePCWrite
field of the microinstruction).

 18

Problem 4c:
Describe/sketch the modifications needed to the datapath for the new instructions (jal, add,
mfc0, and compmul). Asume that the original datapath had only enough functionality to
implement the original 6 instructions. Try to add as little additional hardware as possible. Make
sure that you are very clear about your changes.

 19

Problem 4d:
Describe changes to the microinstruction assembly language for these new instructions. How
wide are your microinstructions now?

Problem 4e:
Write complete microcode for the new instructions. Include the Fetch and Dispatch
microinstructions. If any of the microcode for the original instructions must change, explain how
(Hint: since the original instructions did not use R[rd] as a register input, you must make sure
that your changes do not mess up the original instructions).

