
CS152 Fall ’99 Midterm II Page 1

University of California, Berkeley

College of Engineering

Computer Science Division EECS

Fall 1999

John Kubiatowicz

Midterm II
November 17, 1999

CS152 Computer Architecture and Engineering

Your Name:

SID Number:

Discussion
Section:

Problem Possible Score

1 25

2 25

3 25

4 25

Total

CS152 Fall ’99 Midterm II Page 2

[This page left for π]

3.141592653589793238462643383279502884197169399375105820974944

CS152 Fall ’99 Midterm II Page 3

Problem 1: Memory Hierarchy
Problem 1a: Assume that we have a 32-bit processor (with 32-bit words) and that this processor
is byte-addressed (i.e. addresses specify bytes). Suppose that it has a 512-byte cache that is two-
way set-associative, has 4-word cache lines, and uses LRU replacement. Split the 32-bit address
into “tag”, “index”, and “cache-line offset” pieces. Which address bits comprise each piece?

tag:
index:
cache-line offset:

Problem 1b: How many sets does this cache have? Explain.

Problem 1c: Draw a block diagram for this cache. Show a 32-bit address coming into the
diagram and a 32-bit data result and “Hit” signal coming out. Include, all of the comparators in
the system and any muxes as well. Include the data storage memories (indexed by the “Index”),
the tag matching logic, and any muxes. You can indicate RAM with a simple block, but make
sure to label address widths and data widths. Make sure to label the function of various blocks
and the width of any buses.

CS152 Fall ’99 Midterm II Page 4

[This page left for scratch]

CS152 Fall ’99 Midterm II Page 5

Problem 1d: Below is a series of memory read references set to the cache from part (a). Assume
that the cache is initially empty and classify each memory references as a hit or a miss. Identify
each miss as either compulsory, conflict, or capacity. One example is shown. Hint: start by
splitting the address into components. Show your work.

 Address Hit/Miss? Miss Type?

 0x300 Miss Compulsory

 0x1BC

 0x206

 0x109

 0x308

 0x1A1

 0x1B1

 0x2AE

 0x3B2

 0x10C

 0x205

 0x301

 0x3AE

 0x1A8

 0x3A1

 0x1BA

Problem 1e: Calculate the miss rate and hit rate.

CS152 Fall ’99 Midterm II Page 6

[This page intentionally left blank]

CS152 Fall ’99 Midterm II Page 7

Problem 1f: You have a 500 MHz processor with 2-levels of cache, 1 level of DRAM, and a
DISK for virtual memory. Assume that it has a Harvard architecture (separate instruction and
data cache at level 1). Assume that the memory system has the following parameters:

Component Hit Time Miss Rate Block Size

First-Level
Cache

1 cycle
4% Data

1% Instructions
64 bytes

Second-Level
Cache

20 cycles +
1 cycle/64bits

2% 128 bytes

DRAM
100ns+

25ns/8 bytes
1% 16K bytes

DISK
50ms +

20ns/byte
0% 16K bytes

Finally, assume that there is a TLB that misses 0.1% of the time on data (doesn’t miss on
instructions) and which has a fill penalty of 40 cycles. What is the average memory access time
(AMAT) for Instructions? For Data (assume all reads)?

Problem 1g: Suppose that we measure the following instruction mix for benchmark “X”:

Loads: 20%, Stores: 15%, Integer: 30%, Floating-Point: 15% Branches: 20%
Assume that we have a single-issue processor with a minimum CPI of 1.0. Assume that we have
a branch predictor that is correct 95% of the time, and that an incorrect prediction costs 3 cycles.
Finally, assume that data hazards cause an average penalty of 0.7 cycles for floating point
operations. Integer operations run at maximum throughput. What is the average CPI of
Benchmark X, including memory misses (from part g)?

CS152 Fall ’99 Midterm II Page 8

Problem #2: Superpipelining
Suppose that we have single-issue, in-order pipeline with one fetch stage, one decode stage,
multiple execution stages (which include memory access) and a singe write-back stage. Assume
that it has the following execution latencies (i.e. the number of stages that it takes to compute a
value): multf (5 cycles), addf (3 cycles), divf (2 cycles), integer ops (1 cycle). Assume full
bypassing and two cycles to perform memory accesses, i.e. loads and stores take a total of 3
cycles to execute (including address computation). Finally, branch conditions are computed by
the first execution stage (integer execution unit).

Problem 2a:
Assume that this pipeline consists of a single linear sequence of stages in which later stages
serve as no-ops for shorter operations. Draw each stage of the pipeline as a box (no internal
details) and name each of the stages. Describe what is computed in each stage and show all of
the bypass paths (as arrows between stages). Your goal is to design a pipeline which never stalls
unless a value is not ready. Label each of these arrows with the types of instructions that will
forward their results along these paths (i.e. use “M” for multf, “D” for divf, “A” for addf, “I” for
integer operations). [Hint: be careful to optimize for information feeding into store instructions!]

Problem 2b:
How many extra instructions are required between each of these instruction combinations to
avoid stalls (i.e. assume that the second instruction uses a value from the first). Be careful!

Between a divf and an store: Between a multf and an addf:
Between a load and a multf: Between an addf and a divf:
Between two integer instructions: Between an integer op and a store:

CS152 Fall ’99 Midterm II Page 9

Problem 2c:
How many branch delay slots does this machine have? Explain.

Probem 2d:
Could branch prediction increase the performance of this pipeline? Why or why not?

Problem 2e:
In the 5-stage pipeline that we discussed in class, a load into a register followed by an immediate
store of that register to memory would not require any stalls, i.e. the following sequence could
run without stalls:
 lw r4, 0(r2)
 sw r4, 0(r3)
Explain why this was true for the 5-stage pipeline.

Problem 2f:
Is this still true for the superpipelined processor? Explain.

CS152 Fall ’99 Midterm II Page 10

Problem #3: Fixing the loops

For this problem, assume that we have a superpipelined architecture like that in problem (2) with
the following use latencies (these are not the right answers for problem #2b!):
 Between a multf and an addf: 3 insts Between a load and a multf/divf: 2 insts
 Between an addf and a divf: 1 insts Between a divf and a store: 7 insts
 Between an int op and a store: 0 insts Number of branch delay slots: 1 insts

Consider the following loop which performs a restricted rotation and projection operation. The
array based at register r10 contains pairs of double-precision (64-bit) values which represent x,z
coordinates. The array based at register r20 receives a projected coordinate along the observer’s
horizontal direction:

loop: ldf $F20, 0($r10)
 multf $F6, $F20, $F1
 addf $F12, $F6, $F2
 ldf $F10, 8($r10)
 divf $F13, $F12, $F10
 stf 0($r20), $F13
 addi $r10, $r10,#16
 addi $r20, $r20, #8
 subi $r1, $r1, #1
 bne $r1, $zero, loop
 nop

Problem 3a: How many cycles does this loop take per iteration? Indicate stalls in the above
code by labeling each of them with a number of cycles of stall:

Problem 3b: Reschedule this code to run with as few cycles per iteration as possible. Do not
unroll it or software pipeline it. How many cycles do you get per iteration of the loop now?

CS152 Fall ’99 Midterm II Page 11

Problem 3c: Unroll the loop once and schedule it to run with as few cycles as possible per
iteration of the original loop. How many cycles do you get per iteration now?

Problem 3d: Your loop in (3c) will not run without stalls. Without going to the trouble to unroll
further, what is the minimum number of times that you would have to unroll this loop to avoid
stalls? Explain. How many cycles would you get per iteration then?

Problem 3e: Software pipeline the original loop to avoid stalls. Overlap 5 different iterations.
What is the average number of cycles per iteration? Your code should have no more than one
copy of the original instructions. Ignore startup and exit code.

CS152 Fall ’99 Midterm II Page 12

Extra Credit (Problem 3X):
Assume that you have a Tomasulo architecture with functional units of the same execution
latency (number of cycles) as our deeply pipelined processor (be careful to adjust use latencies
to get number of execution cycles!). Assume that it issues one instruction per cycle and has an
unpipelined divider with a small number of reservation stations. Suppose the other functional
units are duplicated with many reservation stations and that there are many CDBs. . What is the
minimum number of divide reservation stations to achieve one instruction per cycle with the
optimized code of (3b)? Show your work. [hint: assume that the maximum issue rate is
sustained and look at the scheduling of a single iteration]

CS152 Fall ’99 Midterm II Page 13

 Problem 4: Short Answers

Problem 4a: Give a simple definition of precise interrupts/exceptions:

Problem 4b: Explain how the presence of delayed branches complicates the description of a
precise exception point (Hint: what if there is a divide instruction in a delay slot that gets a
divide by zero exception)?

Problem 4c: Explain the relationship between support for precise exceptions and support for
branch prediction. What hardware structure supports both of these mechanisms in a modern out-
of-order pipeline?

Problem 4d: Explain how pipelining can save power (and energy) for multimedia (streaming)
applications:

Problem 4e: A PalmPilot is a portable computing device that holds calendars and addresses. It
has a micro-power mode that stops the clock and shuts down power to the processor when it is
idle. Suppose that it also recognized when the battery was getting low and ran the clock at lower
than normal speed during busy periods. Would this extend battery life? Why or why not?

CS152 Fall ’99 Midterm II Page 14

Figure 1: A basic Tomasulo architecture

Problem 4f: The Tomasulo architecture (shown above) replaces a normal 5-stage pipeline with 4
stages: Fetch, Issue, Execute, and Writeback. One of its strengths is that it is able to Execute
instructions in a different order than the programmer originally specified. The simplest version
of this architecture also performs Writeback out-of-order as well. However, the Fetch and Issue
stages of the Tomasulo architecture are always handled in program order. Why?

Problem 4g: Pipelined architectures have three different types of data hazards with respect to
registers. Name and define them. For each type, give a short code sequence that illustrates the
hazard and describe how a Tomasulo architecture removes this hazard.

�������

,QW�

,QW�

,QW�

��	
�����	���

)ORDW�
)ORDW�

��	 �� ������������

�		���
�
����������

�	 ��

���������	�
�����

/RDG�
/RDG�

/RDG�
/RDG�
/RDG�
/RDG�

6WRUH�
6WRUH�

6WRUH�

CS152 Fall ’99 Midterm II Page 15

Problem 4h: What is register renaming, why is it desirable, and how is it accomplished in the
Tomasulo architecture?

Problem 4i: Why does a Tomasulo architecture need branch prediction?

