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Problem 1 (25 points)

1a [5] State the five major components of a computer (according to Patterson and Hennes-
sey).

1.

 

Processor datapath

2. Processor Control

3. Memory

4. Input

5. Output

 

1b [5 ]: Assemble the following MIPS instruction into its binary machine representation

XORI $15, $0, 0x8000

answer: op(6) rsrtimmediate

001110 00000 01111 1000 0000 0000 0000

1c [5 ]: Decode your answer to 1b as a 32-bit 2’s-complement integer

a) b) c) d)

answer: b) 0011 1000 0000 1111 1000 0000 0000 0000

1d [5 ]: Decode your answer to 1b as an single precision IEEE floating-point number

a) b) c) d)

answer: c) 0 01110000 000 1111 1000 0000 0000 0000

Grading: 1a) 1 point for each component; 1b) 1 point for each field; 1c), 1d) hit or miss for 
multiple choice. 
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1e[5] What are the four basic addressing modes supported by the MIPS R3000 instruction 
set? Draw a diagram of each. (Do not include the special cases that arise from setting one 
of the operands to zero.)

 

register-addressing: value is contained in a register specified in the instruction

base (or displacement) addressing

immediate addressing: value is contained in the instruction

PC-relative addressing: PC <- PC + sign_ext(Imm16)

Points: 1 for each type. -2 for lack of diagrams, or lack of description. Other 
addressing modes were also given credit, if labeled correctly.

Register

Register

immediate

Memory

immediate

PC

address

Memory
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Problem 2 (20 points). You have been running an important program over and over on a 
33 MHz DEC 5000 and you decide that you want to understand its performance. So you 
run it on a detailed simulator and collect the following instruction mix and breakdown of 
costs for each instruction type.

2.a. Calculate the CPI and MIPS for this program.

answer: CPI = 1.5 = 0.5 x 1 + 0.2 x 2 + 0.1 x 2 + 0.1 + 1 + 0.1 x 3, 22 MIPS

Points: +6 for correct answer

2.b. Suppose you turn on the optimizer and it eliminates 20% of the arithmetic/logic 
instructions (i.e. 10% of the instructions overall), but does not affect the other instruction 
classes. What is the speedup on this program with the optimizer. (Be sure you state and 
use the correct definition of speedup and show your work.)

a) 0.93 b) 1.07 c) 1.40 d) 1.55 e) none of these

Answer: 

cycles per equivalent of average old instruction = 1.4 

= 0.4 x 1 + 0.2 x 2 + 0.1 x 2 + 0.1 + 1 + 0.1 x 3.

speedup = 1.5 / 1.4 = 1.05

Points: + 6 for correct answer

2c. Calculate the CPI and MIPS for the optimized version of this program. Show your 
work. Compare your result to that of 2a and explain the change.

Answer CPI = 1.55, 21.2 MIPS. The program spends more of its time executing slow 
instruction, although there are fewer instructions overall.

Points: +8 for correct answer

 

Instruction Class Frequence (%) Cycles

 

Arithmetic / logical 50 1

Load 20 2

Store 10 2

Jump 10 1

Branch 10 3
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Problem 3. (25 points) Complete the skeleton of MIPS assembly language below, gener-
ated by GCC for the following C function. All jumps and branches are delayed. Simple 
pseudo-ops are used to make it more readable. Annotate the instructions to explain what 
they do in the C program.

 

int scale (int *A, int n, int x)

 

Register Usage

 

{

 

$4 - *A

 

 int i;

 

$5 - n

 

  for (i=0; i<n; i++) {

 

$6 - x

 

    A[i] = A[i]*x;
  }
} 

 

.ent    scale
scale:

subu $sp,$sp,8 Adjust Stack pointer_________________
blez $5,$L3 test n = 0, if so fall through____________

        move $7,$0 i = 0______________________________
$L5:

sll     $3,$7,2 multiple i by 2______________________
addu    $3,$3,$4 address of A[i]_____________________
lw      $2,0($3) fetchA[i]__________________________
#nop
mult    $6,$2 A[i]*x____________________________
mflo    $8 extract low 32 bits__________________
#nop
addu    $7,$7,1 increment i________________________
slt     $2,$7,$5 test i<n___________________________
bne     $2,$0,$L5 if i<n go to top of loop________________
sw      $8,0($3) store A[i] <- A[i]*x__________________

$L3:
addu    $sp,$sp,8 restore stack______________________
j $31 return____________________________
#nop

        .end    scale

Points: 3 points for Register Usage; 18 points for instruction fill-ins; 4 points for 
explanation on left side
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Problem 4 (20 points):

The Single-Cycle processor developed in class below (which was very similar to the one 
in the book) supports the instructions in the table below. (Note that, as in the virtual 
machine, the branch is not delayed.) 

 

Consider adding the following instructions to our subset: ADDIU, AND, BLTZ, JAL . On 
the following pages, (1) write the register transfers for the new instructions, (2) modify the 
datapath to support these instructions and (3) specify the control points for each of the new 
instructions.

 

op | rs | rt | rd | shamt | funct = MEM[ PC ]
op | rs | rt |   Imm16 =

inst Register Transfers

ADDU R[rd] <– R[rs] + R[rt]; PC <– PC + 4

SUBU R[rd] <– R[rs] – R[rt]; PC <– PC + 4

ORi R[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4

LW R[rt] <– MEM[ R[rs] + sign_ext(Imm16)]; PC <– PC + 4

SW MEM[ R[rs] + sign_ext(Imm16)] <– R[rs]; PC <– PC + 4

BEQ if ( R[rs] == R[rt] ) then PC <– PC + sign_ext(Imm16)] || 00 

else PC <– PC + 4
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No changes to the datapath are required the the three arithmetic/logical instructions, 
except the ALU needs to support AND. There is already the capability to sign extend 
immediates and to operate on pairs of registers.

To support the BLTZ we need to: 

 

•

 

detect R[rs] < 0, this is just the sign bit of bus_A

To support JAL, we need to:

 

•

 

provide a path from the PC+4 adder onto the register input bus (bus_w)

 

•

 

provide 31 as the destination register number.

 

op | rs | rt | rd | shamt | funct = MEM[ PC ]
op | rs | rt |   Imm16 =

inst Register Transfers

ADDIU R[rt] <– R[rs] + SignExt(Imm16) PC <– PC + 4

AND R[rd] <– R[rs] and R[rt]; PC <– PC + 4

BLTZ if R[rs]

 

31

 

 = 1 then PC <– PC + SignExt(Imm16) || 00 else PC <– PC + 4

JAL R[31] <– PC + 4 PC <– PC
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Problem 4 (cont)

Points: 8 points for register transfers; 8 points for alterations to datapath; 4 points for con-
trol signals

 

TABLE 1. 

Ext ALUsrc ALUCtr MemWr Mem2Reg PC2Reg RegDst RegWr nPC

 

ADDIU sign 1 add 0 0 0 0 1 0

AND x 0 AND 0 0 0 1 1 0

BLTZ x x x 0 x x x 0 lt

JAL x x x 0 x 1 2 1 2
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Problem 5 (10 points)

Write a series of instructions to MIPS instructions to perform a signed 64-bit SLT. The 
operands are passed in registers A1:A0 and A3:A2 with the MSW in the higher numbered 
register. The result should be returned in register t0 with the same convention. Explain 
why your code works.
__________________________________________________________________

/* t0 = a1:a0 <? a3:a2 */

BNE a1, a3, L:

slt t0, a1, a3

sltu  v0, a0, a2

 

L:

Points: +5 for sltu for least significant word; +5 for understanding when to use sltu 
comparator on least significant word (when $a1 = $a3). No points were taken off if 
you did not use the delay slots efficiently.


