

Name: 1

Feb 21, 1996

University of California

College of Engineering

Computer Science Division -EECS

Fall 1996 D.E. Culler

CS 152 Midterm I

Your Name:___

ID Number:___

Discussion Section:__

You may bring one double-sided pages of notes and you may use a calculator, but no book
or computer. Please print your name clearly on the cover sheet and on every page. Show
your work. Write neatly and be well organized. It never hurts to make it easy to grade.

Good luck.

Mean: 69, Max 97

Distribution: 100 - 85 (11), 84 - 70 (21), 69 - 55 (24), 54 - 40 (7), 39 - (2)

Problem Possible Score

1 25

2 20

3 25

4 20

5 10

Total 100

Name: 2

Feb 21, 1996

Problem 1 (25 points)

1a [5] State the five major components of a computer (according to Patterson and Hennes-
sey).

1.

Processor datapath

2. Processor Control

3. Memory

4. Input

5. Output

1b [5]: Assemble the following MIPS instruction into its binary machine representation

XORI $15, $0, 0x8000

answer: op(6) rsrtimmediate

001110 00000 01111 1000 0000 0000 0000

1c [5]: Decode your answer to 1b as a 32-bit 2’s-complement integer

a) b) c) d)

answer: b) 0011 1000 0000 1111 1000 0000 0000 0000

1d [5]: Decode your answer to 1b as an single precision IEEE floating-point number

a) b) c) d)

answer: c) 0 01110000 000 1111 1000 0000 0000 0000

Grading: 1a) 1 point for each component; 1b) 1 point for each field; 1c), 1d) hit or miss for
multiple choice.

229 228 227 220+ + + 230 227– 31 215×+ 7 227× 31 220×+ 14 227× 31 215×+

2 71– 31
256
---------× 2 15– 31

256
---------× 2 15– 287

256
---------× 2112 287

256
---------×

Name: 3

Feb 21, 1996

1e[5] What are the four basic addressing modes supported by the MIPS R3000 instruction
set? Draw a diagram of each. (Do not include the special cases that arise from setting one
of the operands to zero.)

register-addressing: value is contained in a register specified in the instruction

base (or displacement) addressing

immediate addressing: value is contained in the instruction

PC-relative addressing: PC <- PC + sign_ext(Imm16)

Points: 1 for each type. -2 for lack of diagrams, or lack of description. Other
addressing modes were also given credit, if labeled correctly.

Register

Register

immediate

Memory

immediate

PC

address

Memory

Name: 4

Feb 21, 1996

Problem 2 (20 points). You have been running an important program over and over on a
33 MHz DEC 5000 and you decide that you want to understand its performance. So you
run it on a detailed simulator and collect the following instruction mix and breakdown of
costs for each instruction type.

2.a. Calculate the CPI and MIPS for this program.

answer: CPI = 1.5 = 0.5 x 1 + 0.2 x 2 + 0.1 x 2 + 0.1 + 1 + 0.1 x 3, 22 MIPS

Points: +6 for correct answer

2.b. Suppose you turn on the optimizer and it eliminates 20% of the arithmetic/logic
instructions (i.e. 10% of the instructions overall), but does not affect the other instruction
classes. What is the speedup on this program with the optimizer. (Be sure you state and
use the correct definition of speedup and show your work.)

a) 0.93 b) 1.07 c) 1.40 d) 1.55 e) none of these

Answer:

cycles per equivalent of average old instruction = 1.4

= 0.4 x 1 + 0.2 x 2 + 0.1 x 2 + 0.1 + 1 + 0.1 x 3.

speedup = 1.5 / 1.4 = 1.05

Points: + 6 for correct answer

2c. Calculate the CPI and MIPS for the optimized version of this program. Show your
work. Compare your result to that of 2a and explain the change.

Answer CPI = 1.55, 21.2 MIPS. The program spends more of its time executing slow
instruction, although there are fewer instructions overall.

Points: +8 for correct answer

Instruction Class Frequence (%) Cycles

Arithmetic / logical 50 1

Load 20 2

Store 10 2

Jump 10 1

Branch 10 3

Name: 5

Feb 21, 1996

Problem 3. (25 points) Complete the skeleton of MIPS assembly language below, gener-
ated by GCC for the following C function. All jumps and branches are delayed. Simple
pseudo-ops are used to make it more readable. Annotate the instructions to explain what
they do in the C program.

int scale (int *A, int n, int x)

Register Usage

{

$4 - *A

 int i;

$5 - n

 for (i=0; i<n; i++) {

$6 - x

 A[i] = A[i]*x;
 }
}

.ent scale
scale:

subu $sp,$sp,8 Adjust Stack pointer_________________
blez $5,$L3 test n = 0, if so fall through____________

 move $7,$0 i = 0______________________________
$L5:

sll $3,$7,2 multiple i by 2______________________
addu $3,$3,$4 address of A[i]_____________________
lw $2,0($3) fetchA[i]__________________________
#nop
mult $6,$2 A[i]*x____________________________
mflo $8 extract low 32 bits__________________
#nop
addu $7,$7,1 increment i________________________
slt $2,$7,$5 test i<n___________________________
bne $2,$0,$L5 if i<n go to top of loop________________
sw $8,0($3) store A[i] <- A[i]*x__________________

$L3:
addu $sp,$sp,8 restore stack______________________
j $31 return____________________________
#nop

 .end scale

Points: 3 points for Register Usage; 18 points for instruction fill-ins; 4 points for
explanation on left side

Name: 6

Feb 21, 1996

Problem 4 (20 points):

The Single-Cycle processor developed in class below (which was very similar to the one
in the book) supports the instructions in the table below. (Note that, as in the virtual
machine, the branch is not delayed.)

Consider adding the following instructions to our subset: ADDIU, AND, BLTZ, JAL . On
the following pages, (1) write the register transfers for the new instructions, (2) modify the
datapath to support these instructions and (3) specify the control points for each of the new
instructions.

op | rs | rt | rd | shamt | funct = MEM[PC]
op | rs | rt | Imm16 =

inst Register Transfers

ADDU R[rd] <– R[rs] + R[rt]; PC <– PC + 4

SUBU R[rd] <– R[rs] – R[rt]; PC <– PC + 4

ORi R[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4

LW R[rt] <– MEM[R[rs] + sign_ext(Imm16)]; PC <– PC + 4

SW MEM[R[rs] + sign_ext(Imm16)] <– R[rs]; PC <– PC + 4

BEQ if (R[rs] == R[rt]) then PC <– PC + sign_ext(Imm16)] || 00

else PC <– PC + 4

32

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216
imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

=

im
m

16

A
dder

A
dder

P
C

Clk

00M
ux

4

nPC_sel

P
C

 E
xt

Adr

Inst
Memory

0

1

3

Name: 7

Feb 21, 1996

No changes to the datapath are required the the three arithmetic/logical instructions,
except the ALU needs to support AND. There is already the capability to sign extend
immediates and to operate on pairs of registers.

To support the BLTZ we need to:

•

detect R[rs] < 0, this is just the sign bit of bus_A

To support JAL, we need to:

•

provide a path from the PC+4 adder onto the register input bus (bus_w)

•

provide 31 as the destination register number.

op | rs | rt | rd | shamt | funct = MEM[PC]
op | rs | rt | Imm16 =

inst Register Transfers

ADDIU R[rt] <– R[rs] + SignExt(Imm16) PC <– PC + 4

AND R[rd] <– R[rs] and R[rt]; PC <– PC + 4

BLTZ if R[rs]

31

 = 1 then PC <– PC + SignExt(Imm16) || 00 else PC <– PC + 4

JAL R[31] <– PC + 4 PC <– PC

31..28

 || Imm26|| 00

31

2

LT

2

pc2reg

Im26

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xten

d
er

M
u

x

3216
imm16

ALUSrcExtOp

M
u

x

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRtRs

=

A
d

d
er

A
d

d
er

P
C

Clk

00

M
u

x

4

nPC_sel

P
C

 E
xt

Adr

Inst
Memory

2

Name: 8

Feb 21, 1996

Problem 4 (cont)

Points: 8 points for register transfers; 8 points for alterations to datapath; 4 points for con-
trol signals

TABLE 1.

Ext ALUsrc ALUCtr MemWr Mem2Reg PC2Reg RegDst RegWr nPC

ADDIU sign 1 add 0 0 0 0 1 0

AND x 0 AND 0 0 0 1 1 0

BLTZ x x x 0 x x x 0 lt

JAL x x x 0 x 1 2 1 2

Name: 9

Feb 21, 1996

Problem 5 (10 points)

Write a series of instructions to MIPS instructions to perform a signed 64-bit SLT. The
operands are passed in registers A1:A0 and A3:A2 with the MSW in the higher numbered
register. The result should be returned in register t0 with the same convention. Explain
why your code works.
__

/* t0 = a1:a0 <? a3:a2 */

BNE a1, a3, L:

slt t0, a1, a3

sltu v0, a0, a2

L:

Points: +5 for sltu for least significant word; +5 for understanding when to use sltu
comparator on least significant word (when $a1 = $a3). No points were taken off if
you did not use the delay slots efficiently.

