

CS152 Exam #2
Fall 2003

Professor Dave Patterson

Question 1: Potpourri (Jack and Dave’s Question)

Part A:

TLBs entries have valid bits and dirty bits. Data caches have them also. Which of the
following are true? Circle the correct answer(s).

A. The valid bit means the same in both: if valid = 0, it must miss in both TLBs
and Caches.

B. The valid bit has different meanings. For caches, it means this entry is valid if
the address requested matches the tag. For TLBs, it determines whether there
is a page fault (valid=0) or not (valid=1).

C. The dirty bit means the same in both: the data in this block in the TLB or
Cache has been changed.

D. The dirty bit has different meanings. For caches, it means the data block has
been changed. For TLBs, it means that the page corresponding to this TLB
entry has been changed.

Explain (briefly):

Part B:

Buses and networks share some common characteristic yet retain some differences.
Which of the following are true? Circle the correct answer(s).

A. Multimaster buses need to resolve arbitration before using the bus, while
networks don’t.

B. Both buses and networks transfer multiple words to increase communication
bandwidth.

C. Networks are often connected in a hierarchy while buses are not connected in
such a way.

D. Buses usually connect computers together while networks usually connect I/O
peripherals to processors.

Explain (briefly):

Question 1: Potpourri (Jack and Dave’s Question) Continued…

Part C:

What would be the bottleneck if we tried to turn an ordinary single issue tomasulo
machine into a dual issue machine by changing only the issue (and Icache) unit to issue 2
instructions at once?

Part D:

Briefly explain how the Tomasulo algorithm resolves the following classes of hazards:

RAW:

RAR:

WAW:

WAR:

Question 1: Potpourri (Jack and Dave’s Question) Continued…

Part E:

Again, assume we have a dual-issue Tomasulo machine with exactly three reservation
stations for arithmetic instructions. The reservation stations/functional units along with
their execution latencies are as follows:

adds and subs -- a cycles
multiply -- 2a cycles
divide -- 5a cycles

(Loads, stores, and branches are handled separately.)

What is the minimum number of entries in each of the reservation stations and in the
ROB necessary to guarantee that we wont stall on a structural hazard while trying to issue
an arithmetic instruction?

Add/sub reservation station: _______________

Multiply reservation station: _______________

Divide reservation station: _______________

Number of entries in the Reorder Buffer: _______________

Part F:

The x86 instruction set only has 8 ISA-defined general purpose registers. Assume that
each instruction only writes to one register, but may read from up to 3 registers (those
darn CISC instructions!) If the maximum number of instructions that can be in flight at
any given time is 32, how many physical registers must we have in order to implement
explicit register renaming?

Number of physical registers: ________

Question 2: Cache This! (Kurt’s Question)

Kurt’s rinky-dink computer has the following organization:

His computer has 32-bit words and addresses and no virtual memory system.

The worst-case latency of the entire memory system is 1 cycle. (I.e., the cycle time is
long enough such that L1Dcache, L1Icache, and L2 can all miss on the same request, fill
their blocks, and L1I and L1D can return the requested data all in the same cycle. This
assumption is totally unrealistic and defeats the purpose of having a cache, but it will
make your calculations easier.)

Assume further that the L2 cache is dual-ported but services Icache requests before
Dcache requests.

IF DE EX ME RW

L1 Icache:
Size: 8words
Assoc: 2-way LRU
Blocksize: 2words
Policy: Reads/fills

Victimm Cache

Victim Cache
2 blocks, fully
associative

L1 Dcache:
Size: 8words
Assoc: Direct Map
Blocksize: 2words
Policy: WriteBack,
No Allocate

L2 Unified Cache: (dual ported)
Size: 64 Words Blocksize: 4 words
Associativity: Fully Associative
Write Policies: Write Trhough, Write Allocate

Main Memory:
Each word in memory is initialized with its address
Example: 0x00000001 contains 0x1, 0x00000002 contains 0x2,
0x0badbeef contains 0x0badbeef, etc. (except as explicitly listed below)

Question 2: Cache This! (Kurt’s Question) Continued…

Part A:

Please show the structure of each of the 4 caches in a table format. We’ve done the L1
Dcache for you; your answers should contain the same types of information as ours. Be
sure to include the size of all fields in the cache.

L1 Icache: L1 Icache Victim Cache:

L1 Dcache:

Index # Tag Word0 Word1
00
01
10
11

Tag will be 27 bits for each block.
Index will be 2 bits from address.
Block offset will be 1 bit.
Byte offset is 2 bits.

L2 Unified:

Question 2: Cache This! (Kurt’s Question) Continued…

Part B:

Assume that Kurt just turned on his computer (with memory initialized as described
above except for the addresses below) and then started executing these instructions. For
each instruction, consider each of the 4 caches. For each cache, indicate whether the
instruction hits in that cache (“H”), misses in that cache (“M”), or is never checked (“X”).
For cache hits and misses, also include the cycle number on which the access occurred.
Some boxes may have more than one entry. We have filled in a couple entries for you.

Don’t forget that this is a pipelined processor!

Address Instruction L1

Icache
L1
Victim

L1
Dcache

L2

0x00000000 Lw $1 0xBAD0($0) M-1 M-1 M-4 M-1

0x00000004 Lw $2 0xBAD4($0)

0x00000008 Lw $3 0xBA04($0)

0x0000000C Sw $1 0($0)

0x00000010 Sw $2 0x0C($0)

0x00000014 Sw $3 0x80($0)

0x00000018 Sw $4 0x0C($0)

Question 3: Superscalar (John’s Question)

You are an engineer working at Advanced Intelligent Devices. Your workers have
proposed 3 different MIPS 2000 processor designs to you.

Processor A is a 5-stage pipeline identical to the one described in your Fall 2003 CS152
class. It has a full five stages and writes to the register file can be read during the same
cycle:

Processor B is a limited superscalar processor that can handle branches and jumps only in
the first pipeline and memory operations only in the second pipeline. Integer operations
can be executed in both pipelines as long as they are not dependent. Instructions are only
issued if they are not dependent. The first pipeline always executes earlier instructions
and the second pipeline always executes later instructions:

Processor C is a full superscalar processor that has no restrictions on placement of
branches, jumps, or memory operations. The only restriction is that like the limited
superscalar pipeline, earlier instructions are always in the first pipeline:

A: IF ID EX MEM WB

B: IF ID EX1 NOP WB1

EX2 MEM WB2

B: IF ID EX1 MEM1 WB1

EX2 MEM2 WB2

Question 3: Superscalar (John’s Question) Continued…

In the 5-stage pipeline, when instruction 0x40000000c is completing WB for the first
time, the pipeline looks like this.

Now fill in the stages for each of the pipelines as instruction 0x40000034 is completing
WB for the second time. (If you like, you can use just the first two fields of the
instruction.)

Processor A:

Processor B:

Processor C:

IF ID EX MEM WB

IF ID EX1 NOP WB1

EX2 MEM WB2

IF ID EX1 MEM1 WB1

EX2 MEM2 WB2

IF
lw $t4, 4($t9)

ID
lw $t3, -4($t0)

EX
lw $t2, 0($t9)

MEM
lw $t1, 0($t0)

WB
ori $t9 $t9 fffc

Question 3: Superscalar (John’s Question) Continued…

Part B:

If you were asked to reorder the instructions to improve performance for either processor
B or processor C, which would be easier and why?

Part C:

Now reorder the instructions for the processor that you thought was easier. Indicate
where the stalls will occur (if there are any left). You may not change the code size.

Address Label Instruction
0x40000000
0x40000004
0x40000008
0x4000000c
0x40000010
0x40000014
0x40000018
0x4000001c
0x40000020
0x40000024
0x40000028
0x4000002c
0x40000030
0x40000034
0x40000038
0x4000003c
0x40000040
0x40000044
0x40000048

