
 
 
 
 
 
 

 
Midterm I 

 
October 10th, 2001 
John Kubiatowicz 

 
 
 

CS152 Computer Architecture and Engineering 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem 1: Short Answer 
Problem 1a [3 pts]: 



What is Amdhal’s law?  Give a formula and define the terms.  How is this useful? 
 
 
 
 
 
 
 
 
 
Problem 1b [2 pts]: 
How can clock skew cause incorrect behavior in a synchronous circuit? 
 
 
 
 
 
 
 
 
 
Problem 1c [3 pts]: 
Is the multi-cycle data path always faster than the single-cycle data page?  Explain. 
 
 
 
 
 
 
 
 
 
 
Problem 1d [2 pts]: 
What is the difference between horizontal and vertical microcode? 

 
 
 
 
 
 
 
 

 
Problem 1d [3 pts]: 



Suppose that you have analyzed a benchmark that runs on your company’s processor.  This 
processor runs at 500MHz and has the following characteristics: 
 

Instruction Type Frequency (%) Cycles 
Arithmetic and logical 40 1 

Load and Store 30 2 
Branches 20 3 

Floating Point 10 7 
 
What is the CPI and MIPS rating of this processor running this benchmark? 
 
 
 
 
 
 
 
 
 
 
 
Problem 1e [4 pts]: 
The micro-sequencer shown in class had three options: “zero (or fetch)”, “dispatch”, and 
“increment”.  Assume an 8-bit µPC if some external condition is true, or advance to the next 
microinstruction (increment the µPC), if the condition is false.  Draw a block-diagram of this 
micro-sequencer, complete with 2-bit control input, 8-bit µPC output, 1-bit condition input, and 
4-bit signed branch offset input. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem 1f [3 pts]: 



The 1-bit Booth algorithm recodes one of the operands of a multiplier from binary into trinary 
logic with symbols: 1, 1, and 0.  The transformation occurs one bit at a time, as given in class: 

Cur Prev Out 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
Suppose we encode 3 bits at a time.  Finish filling out the following transformation table: 
 

Cur Prev Out 
000 0 0 
000 1 1 
001 0 1 
001 1 2 
010 0  
010 1  
011 0  
011 1  
100 0  
100 1  
101 0  
101 1  
110 0  
110 1  
111 0  
111 1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem 2: General Base Conversions 



In this problem, construct a subroutine that can convert a string of any base (from 2 to 16) to an 
integer.  The specifications are as follows: 

• The first argument (a0) contains a pointer to a null-terminated string 
• The second argument (a1) contains the base and will be such that 2 ≤ a1 ≤ 16 (you can 

assume that this is true) 
• On exit, v0 will contain the result and v1 will contain an error code 
• This procedure (call it “convert”) must adhere to all MIPS conventions 

 
If any character in the string (before the final null character) is not a legal character for the 
specified base, then the result is an error.  Also, a zero-length string (no characters at all) is an 
error.  Finally, an overflow (result doesn’t fit in 32-bits) is an error.  In the case of an error, the 
value of v0 is undefined. 
 
Examples: 
 If the input string is “B6” and the base is 16, the result register (v0) should contain 182 
 If the input string is “B6” and the base is 12, the result register, should contain 138 
 If the input string is “B6” and the base is 10, this is a “bad character” error 
 If the input string is “” (i.e. first character is null), this is a “null string” error 
 If the input string is “10110” and the base is 2, the result register should contain 22 
 If the input string is “FFFFFFFFF” and the base is 16, this is an “overflow” error 
 
Error codes (for v1): 
 Success: 0 
 Null String: 1 
 Bad character: 2 
 Overflow: 3 
 
The important portion of the ASCII character table is as follows (Note that values are in HEX 
notation): 
 

Character ASCII Value 
‘0’ 0x30 
‘1’ 0x31 
‘2’ 0x32 
‘3’ 0x33 
‘4’ 0x34 
‘5’ 0x35 
‘6’ 0x36 
‘7’ 0x37 
‘8’ 0x38 
‘9’ 0x39 

 
 
 
 
 

Character ASCII Value 
‘A’ 0x41 
‘B’ 0x42 
‘C’ 0x43 
‘D’ 0x44 
‘E’ 0x45 
‘F’ 0x46 

 



Problem 2a [13 pts]: 
Write this routine in as few instructions as possible.  Assume a virtual MIPS machine (no branch 
delay slots).  Call this routine convert().  Hint: process characters one at a time.  Each new 
character will multiply the current result by the base. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem 2b [2 pts]: 
How would the arguments and return values to convert() have to change in order to allow it to 
operate on arbitrarily long input strings (i.e. to remove the possibility of an “overflow” error)? 
 
 
 
 
 



Problem 3: Delay For a Full Adder 
 
A key component of an ALU is a full adder.  A symbol for a full adder is:  

 
 
Problem 3a [4 pts]: 
Implement a full adder using as few 2-input NAND, NOR, and XOR gates as possible.  Keep in 
mind that the Carry In signal may arrive much later than the A or B inputs.  Thus, optimize your 
design (if possible) to have as few gates between Carry In and the two outputs as possible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Assume the following characteristics for the gates: 
 NAND: Input load: 60fF, 
  Propagation delay: TPlh=0.5ns, TPhl=0.2ns 
  Load-Dependent delay: TPlhf=.0021ns, TPhlf=.0020ns 
 NOR:  Input load: 60fF 
  Propagation delay: TPlh=0.8ns, TPhl=0.1ns 
  Load-Dependent delay: TPlhf=.0042ns, TPhlf=.0010ns 
 XOR:  Input load: 200fF 
  Propagation delay: TPlh=0.9ns, TPhl=0.9ns 
  Load-Dependent delay: TPlhf=.0032ns, TPhlf=.0030ns 
 
Problem 3b [3 pts]: 
Compute the input load for each of the 3 inputs to your full adder: 
 
 
 
 
 
 
Problem 3c [2pts]: 
Compute the Load-Dependent delay for each of the two outputs: 
 
 
 
 
 
 
Problem 3d [6 pts]: 
Identify two critical paths from the inputs to the Sum and the Carry Out signal.  Compute the 
propagation delays for these critical paths based on the information given above.  (You will have 
2 numbers for each of these two paths).  Account for wire delay. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problem 4: Hardware Square Root 
Suppose that you have a 32-bit value, M, and you wish to find the closest integer, S, less than its 
square-root, sqr(M).  Let’s call S the “integer square root of M”.  Since you are forcing S to be 
an integer, you will end up with a remainder, R = M – S2.  In this problem, we will come up with 
an iterative mechanism to compute S one bit at a time. 
 
Let us suppose that we have an estimate, Si, for the square root of M.  We will assume that Si is 
less than the desired value S, i.e. Si <= S.  Next, assume that we add a small increment to this 
estimate to make a better estimate, Si+1.  Call this increment Ni+1: 
 

Si+1 = (Si + Ni+1) <= S 
 
Now, the remainder after the first estimate is: Ri = M – Si

2, 
while after the second estimate is:   Ri+1  = M – Si+1

2 
        = M – Si

2 – Ni+1 * (2 * S + Ni+1) 
 
So, each time we pass through the algorithm, we subtract the following from the remainder: 
 

Qi+1 =Ri – Ri+1 = Ni+1 * (2 * S + Ni+1) 
 
In binary, the increment values (the N’s) are single bits.  Thus, each iteration through the 
algorithm, we multiply the previous estimate by 2, add in the new bit (Ni+1), then shift by the 
number of zeros in Ni+1 before subtracting from our remainder.  This is very much like a divide 
in which the divisor keeps changing.  For example, consider finding the 4-bit square root of 118: 
 
 Starting:  M = R0 =  01110110 and  S0 = 0000 
Try: N1 = 1000     -  1000       (2*S0 + 1000) * 1000 
    R1 = 00110110  S1 = S0 + 1000 = 1000 
Try: N2 = 0100     -  10100      (2*S1 + 0100) * 0100 
    Result < 0  S2 = S1 = 1000 
    R2 = 00110110 (unchanged) 
Try: N3 = 0010     -   10010    (2*S2 + 0010) * 0010 
    R3 = 00010010  S3 = S2 + 0010 = 1010 
Try: N4 = 1000     -    10101    (2*S3 + 0001) * 0001 
    Result < 0  S4 = S3 = 1010 
    R4 = 00010010 (unchanged) 
 
Final result:   sqrt(01110110) = 1010 with 10010 remainder 
 or:   sqrt(118) = 10 with 18 remainder! 
 
 
 
 
 
 
 



Problem 4a [10 pts]: 
Below is part of a circuit to extract square roots.  This circuit is very similar to the circuit for 
divide.  There are three things missing:  (1) Internals for the “Update” and “Try” blocks, (2) 
logic to initialize the circuit, and (3) control logic.  Draw these into the circuit.  Draw the 
controller as a block with inputs and outputs (no internals).  Draw all control signals!  Hint: part 
of the update of the remainder each cycle (Qi+1) is accomplished by shifting the remainder to the 
left. 
 
 

 
 
 
 



Problem 4b [5 pts]: 
Draw a state machine to control your circuit in Problem 4a.  Include all of the control signals.  
Assume that there is a reset signal that starts the computation and that the controller produces a 
“Done” signal when finished. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problem 4c [2 pts]: 
The circuit handles unsigned M.  Is it easy to extend the algorithm for a signed M?  Explain. 
 
 
 
 
 
Problem 4d [2 pts]: 
For a 64-bit, unsigned-value M, what is the largest possible integer square-root, S-max?  How 
many bits would it take to represent (This is “Y” in the above circuit)?  Explain.  (Hint: Start by 
finding the smallest integer that is larger than S-max) 
 
 
 
 
 
 
 
 
 
Problem 4e [3 pts]: 
Also for a 64-bit unsigned-value M, what is the largest possible remainder, R-max?  How many 
bits would it take to represent?  Explain (Use the same hint as above). 
 
 
 
 
 
 
 
 
Problem 4f [3 pts]: 
What is the maximum size of the ALF (in bits) that you would need to perform a 64-bit square-
root?  (be careful here!)  (for both multiplication and division, the answer was 32-bits).  Explain 
your answer (This is “X” in the above circuit). 
 
 
 
 
 
 
 
 
 
 
 



Problem 5: New instructions for a multi-cycle data path 

 
 
The Multi-Cycle datapath developed in class and the book is shown above.  In class, we 
developed an assembly language for microcode.  It is included here for reference: 
 

Field Name Values For Field Function of Field 
Add ALU Adds 
Sub ALU subtracts 

 
ALU 

Func ALU does function code (Inst[5:0]) 
Or ALU does logical OR SRC1 
PC PC  1st ALU input 
rs R[rs]  1st ALU input 
4 4  2nd ALU input 
rt R[rt]  2nd ALU input 

Extend Sign ext imm16 (Inst[15:0])  2nd ALU input 
Extend0 Zero ext imm16 (Inst[15:0])  2nd ALU input 

 
 
 

SRC2 

ExtShft 2nd ALU input = sign extended imm16 << 2 
rd-ALU ALUout  R[rd] 
rt-ALU ALUout  R[rt] 

 
ALU Dest 

rt-Mem Mem input  R[rt] 
Read-PC Read Memory using the PC for the address 
Read-ALU Read Memory using the ALUout register for the address 

 
Memory 

Write-ALU Write Memory using the ALUout register for the address 
MemReg IR Mem input  IR 

ALU ALU value  PCibm PC Write 
ALUoutCond If ALF Zero is true, then ALUout  PC 

Seq Go to next sequential microinstruction 
Fetch Go to first microinstruction 

 
Sequence 

Dispatch Dispatch using ROM 
 



In class, we made our multicycle machine support the following six MIPS instructions: 
 
 op | rs | rt | rd | shamt | func = MEM[PC] 
 op | rs | rt |        Imm16        = MEM[PC] 
 
 INST  Register Transfers 
 ADDU  R[rd]  R[rs] + R[rt];   PC  PC + 4 
 SUBU  R[rd]  R[rs] – R[rt]:   PC  PC + 4 
 ORI  R[rt]  R[rs] + zero_ext(Imm16);  PC  PC + 4 
 LW  R[rt]  MEM[R[rs] + sign_ext(Imm16); PC  PC + 4 

LW  MEM[R[rs] + sign_ext(Imm16)  R[rs]; PC  PC + 4 
BEQ  if(R[rs] == R[rt]) then PC  PC + 4 + sign_ext(Imm16) || 00 
     else PC  PC + 4 

For your reference, here is the microcode for two of the 6 MIPS instructions: 
 

Label ALU SRC1 SRC2 ALUDest Memory MemReg PCWrite Sequence
Fetch Add PC 4  ReadPC IR ALU Seq 

Dispatch Add PC ExtShft     Dispatch 
         

RType Func rs rt     Seq 
    rd-ALU    Fetch 

BEQ Sub rs rt    ALUoutCond Fetch 
 
In this problem, we are going to add four new instructions to this data path: 
 
 jal  <const>     R[31]  + 3 
        PC  zero_ext(Instr[25:0]) || 00 
 
 addiu $rt, $rs, <const>  R[rt]  R[rs] + sign_ext(Imm16) 
 

bcp  $rd, $rs, $rt   Copy block of words of length R[rt]  
from  address R[rs] to address R[rd] 

 
1. The jal and addiu instructions should be familiar to you from the normal MIPS 

instruction set. 
2. Several notes about the block copy operation: 

a. The block copy operation has word addresses as input and a length in words.  
Keep this in mind (so as not to be off by a factor of 4 in an incorrect direction). 

b. Assume that the register file cannot be altered during this process, i.e. registers 
$rs, $rt and $rd must be the same before and after the execution of the 
instruction. 

c. Don’t worry about the case in which source and destination blocks overlap. 
 
 
 
 



Problem 5a [10 pts]: 
Describe/sketch the modifications needed to the datapath for the new instructions (jal, 
addiu, and bcp).  Assume that the original datapath had only enough functionality to 
implement the original 6 instructions.  Try to add as little additional hardware as possible.  You 
are not required to redraw the whole datapath.  Make sure that you are very clear about your 
changes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problem 5b [5 pts]: 
Draw a block diagram of a microcontroller that will support the new instructions (it will be 
slightly different than that required for the original instructions).  Include sequencing hardware 
(Hint:  see problem [1e], the dispatch ROM, the microcode ROM, and decode blocks to turn the 
fields of the microcode into control signals.  Make sure to show all of the control signals coming 
from somewhere (hint: The PCWr, PCWrCond, and PCSrc signals must come out of a block 
connected to the PCWrite field of the microinstruction) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problem 5c [4 pts]: 
Describe changes to the microinstruction assembly language for these new instructions.  How 
wide are the encoded microinstructions? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem 5d [6 pts]: 
Write complete microcode for the new instructions.  Include the Fetch and Dispatch 
microinstructions.  If any of the microcode for the original instructions must change, explain how 
(Hint: since the original instructions did not use R[rd] as a register input, you must make sure 
that your changes do not mess up the original instructions). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


