
University of California, Berkeley
College of Engineering

Department of Electrical Engineering and Computer Science

CS152 Midterm Solution

Prof. Bob Brodersen

Fall, 2000

Problem 1: Single-cycle Processor and Performance Evaluation

We have a single cycle processor as we learned in class. Besides the instructions R-format, lw,
sw, and beq that the processor already implemented, the designer figured that certain software
does the following instructions extensively
cs $t $s1 $s2; cslw $t $s1 $s2; cslwcs $t $s1 $s2 .

Besides the usual PC handling and instruction fetch as before,
• the cs instruction is described as:

$t <= max($s1, $s2)
• The cslw does the following:

$t <=memory [max($s1,$s2)]
• The cslwcs instruction the following:

$t <= max{$s1, memory[max ($s1, $s2)]}

So now you see that cs and lw in above names stand for compare_select and loadword.

The designer plans to modify the datapath and control signal based on the processor showed in
next page. It’s a textbook processor with some missing blocks and wiring to fill in. The
components he can use are any of the blocksalready presentin the design and the generalized
GALU (showed above) with an additional output GREATER that equals to 1 if Input1-Input2
>0, and equals to 0 if Input1-Input2 =< 0.

input1

Input 2

zero

Greater

output

GALU

ALUcontrol

box1
box2A

B C

Questions:
a).Describe below in words and fill in box 1the blocks needs to be added in order to
implement the cs and cslw instruction.Furthermore add in and draw in box 2 any additional
blocks to implement the cslwcs instruction. (hint: think about doing so by adding GALU(s),
MUX(es),AND(s) etc., and possibly new control signal(s))

i) For cs and cslw:

The datapath needs minor changes. Basically, needs a GALU1. The Greater1 signal is used
to select between $s1 and $s2 (so a mux is needed), and another control signal NEWC1 is used
to choose between this output and the GALU data output (another mux is needed). In total 1
GALU and 2 mux needed

The datapath needs minor changes. Basically, ALU needs to be replaced by GALU1. The
Greater1 signal is used to select between $s1 and $s2 (so a mux is needed), and another control
signal NEWC1 is used to choose between this output and the GALU data output (another mux is
needed). In total 1 GALU and 2 mux needed

ii) For cslwcs:

One way to add cslwcs is add another generalized ALU2 after the right most mux to compare the loaded word and
$s1 (subtraction and generate GREATER2), and then add a new mux with control signal NewC2 such that
NewC2&Greater2 selects the value between $s1 and memory output. In general 1GALU, 1 mux and 1 AND are
needed.

Box 1

Read data 1

Mux b output

To AND gate

To Memory and Mux c

Box 2

Mux c output To Reg file write data

b). Fill in the control table below with X, 0 or 1. Add in new column(s) if you need new control
signal(s) (you may not need all three columns)

c). Please point
out thecritical
path, estimate
for him the
critical path

delay in ns, and hence determine thefastest clock rate in MHz. Finally use a program given
below toevaluate the processor. Use the following delay parameters (ignore hold time and
regard clock-to-Q time as the delay, consider setup time for register files write delay):

• ALU or GALU, delay = 15 (ns)
• Sign/zero extender, delay = 3(ns)
• 2-1 Mux, delay = 2 (ns)
• Memory, delay (both write and read) = 10 (ns)
• Register, delay = 1 (ns)
• Register files, read delay =10 (ns), write setup time=10 (ns)

All other components’ delays are ignored.

i) Critical path is (write down the components’ names in order):

See below

ii) Critical path delay is (ns) ? and fastest clock rate in Mhz ?
The original processor has delay = loadword delay = PC+ instruction mem + register file +

mux + ALU+data memory + mux+ register write =1+10+10+2+15+10+2+10=60 ns
Now have additional 2 mux + 1GALU+1mux (ignore and delay) = 51+ 4+ 15+2=81 ns
The fastest CLK Rate= 1/81ns= 1000/81 MHz

(note that if you used different way in part a), your result here will be different as well, which is
OK)

iii) Now use a program to evaluate the performance of this new processor. The program
has 10% lw instructions, 10% beq, 10%sw, 20% R-format, 25% cs, 15% cslw,

Instruction Alusrc Memto
Reg

Reg
Write

Mem
Read

Mem
Write

NewC1 NewC2

Sw 1 X 0 0 1 0 0
R-format 0 0 1 0 0 0 0
cslw 0 1 1 1 0 1 0
cslwcs 0 1 1 1 0 1 1

10%cslwcs. The program contains 1,000,000 instructions in total. How much time is
needed to run this program?

With this new processor, the time = 1,000,000 * 81ns = 81ms

d). Please write down an as-simple-as-possible decompositionof the cslwcs instruction in
terms of cs,cslw, lw, sw and/or R-format instructions. Thus the original processor can be
modified only to run additional cs and cslw in one cycle and use multi-cycles for cslwcs.
Estimate the critical path delay for this processor, and henceevaluate the time neededto run
the same program in part c-iii.

i) cslwcs $t $s1 $s2 ÿ (in terms of cs, cslw, lw, sw and R-format)
cslw $temp $s1 $s2
cs $t $s1 $temp

ii) This time worst case delay =

60+ 2mux=64ns,

iii) so the new processor need to use ?(ms) to run the program

(1,000,000*10%+1,000,000)*64 = 70.4 ms,

Problem 2: Bus-based Multicycle Processor (30 points)

The datapath below forms a multicycle processor which uses two time-multiplexed buses for communication rather
than point-to-point connections and muxes. What are the pros and cons of such an architecture? Is it a good idea?
This problem will get you started toward a decision…

You can make the following assumptions:
• The next PC logic will automatically increment the PC when you fetch a new instruction
• Both the sign-extended and zero-extended forms of the immediate field are available to Bus B
• The register specifiers Rs, Rt, and Rd are always correctly passed to the register file (data written into the

register file is passed from BusB)
• Both the register file and the memory have purely combinational (asynchronous) reads
• The register file, memory, and all registers are triggered by the same clock edge (with no skew)

You can use the rest of this page for scratch space. The first question begins on the next page…

Bus A

Bus B

Register
File

A

B

I
R

S
P
C

nPC
MEM

M

S
X

Z
X

Rs,Rt,Rd

A

D

D

A

A) [10 points] Microprogram the following instructions by filling in the table. TheSrcA andSrcB fields
specify which signals will be assigned to BusA and BusB, respectively. TheWrDest field specifies what
component is written at the end of the cycle. This can be any one of the state registers (A and B can be paired
together in one cycle), the register file, or memory. It is implied that all other components will not be written
accidentally. TheSequencefield behaves as presented in class: it specifies whether the microprogram should return
to the fetch stage to start a new macroinstruction, dispatch to a location specific to the current opcode, or proceed in
order. You should ignore the BEQ instruction for now – it is only provided for part (C).Hint: you do not need to
fill all the rows.

µAddr Instruction SrcA SrcB ALUOp WrDest Sequence

00 Fetch PC Mem – IR Next
01 Decode – – – A,B Dispatch
02 ADD A B Add S Next
03 – S – RegFile Fetch
04
05
06 ADDI A SX Add S Next
07 – S – RegFile Fetch
08
09
0A LW A SX Add S Next
0B S – – M Next
0C – M – RegFile Fetch
0D
0E SW A SX Add S Next
0F S B – Mem Fetch
10
11

12 BNE A B Sub –
If ALUzero
Then Next
Else Fetch

13 PC SX Add PC* Fetch

Note that for the LW instruction, given the way the problem was defined it was acceptable to
have the last two cycles merged into one. Therefore, if your answer had the memory access and
write back both occur in the fourth cycle, you should not have lost points.

B) [10 points] One of the major drawbacks to using large buses is the massive loading caused by so many
components all connected to the same node. To approximate the effect of the increased loading, assume that it takes
an additional 10ns just to drive a signal on a bus (in other words, assume the hollow arrowheads in the datapath
schematic have a delay of 10ns). Each component delay is copied below for your reference (you’ll notice they all
match the other problems).Neglecting the BNE instruction, what is the maximum clock frequency of this
processor?

Registers (clk-to-Q) 1ns
Register File 10ns
Extender 3ns
ALU 15ns
Memory 10ns
nPC Logic 10ns

The critical path of this processor is during instruction fetch, where the buses must be accessed twice, along with the
memory and register delay. The minimum cycletime is therefore
Time = clk-to-Q + bus_access + memory + bus_access

= 1 + 10 + 10 + 10
= 31 ns

The maximum clock frequency is the inverse of time, such that
Freq = 1/Time

= 1/31 ns
≈ 32.258 MHz

C) [10 points] Calculate the execution time of the following assembly program, which adds two 1000-element
integer vectors. The base pointers of the source vectors and the destination vector are initially stored in $4, $5, and
$6 respectively.Give your reasoning and/or equations in words, andclearly substitute each term with its actual
numerical value!

ADDI $0, $8, 1000
top: LW $10, 0($4)

LW $11, 0($5)
ADD $12, $10, $11
SW $12, 0($6)
ADDI $4, $4, 4
ADDI $5, $5, 4
ADDI $6, $6, 4
ADDI $8, $8, -1
BNE $8, $0, top

Based on our microprogramming above, we get the following CPI for each instruction: ADD = 4, ADDI = 4, LW =
5, SW = 4, and BNE = 3or 4. The trick is noticing that the BNE instruction takes a different number of cycles
based on the branch condition.

Since this is a finite closed loop, we know that exactly 999 branches are taken, and the last one is not taken. That
gives us the following instruction counts: ADD = 1000, ADDI = 4(1000)+1, LW = 2(1000), SW = 1000, BNEtaken=
1, BNEnot_taken= 999. We now can find the number of cycles needed to execute the program by summing the
products of CPI and instruction count:

Cycles =Σ(CPI * #Instructions)
= 4(1000) + 4(4001) + 5(2000) + 4(1000) + 3(1) + 4(999)
= 4000 + 16004 + 10000 + 4000 + 3 + 3996
= 38,003

Execution time is now just the product of cycle count and cycle time:

Time = Cycles * CycleTime
= 38,003(31 ns) =1.178 ms

Problem 4: MIPS 5 Stage Pipelined Processor (30 points)
The processor shown on the next page is one implementation of a standard MIPS 5 stage pipelined

processor. The specifications of the processor are as following:
�� Five pipeline stages: IF, ID, EX, MEM, WB
�� The processor does not have forwarding nor hazard implemented yet.
�� Control signal are represented by dotted lines.Control bus value represents the actual control bits from

top down.Control signal values are inbinary format. Data signal values are indecimal value.
�� RegisterFilewrites in the first half of the cycle, andreads in the second half
�� Both instruction and data memory read asynchronously; data memory writes synchronously. Both

memories arebyte addressed. Data memory size is 16 words and only the least significant bits are used to
address the memory.

�� Each component has been labeled withworst-case delay. Registers only have clock-to-Q delay,zero
setup/hold time. Assume no clock skew.

�� The diagram of the processor also includes a snapshot of the processorat the beginning of the cycle,with
necessary signal values labeled.

�� Table 1 & 2 shows the contents of the Register file, Data memory at the snapshot time.Assume register file
and memory have been correctly updated in the previous cycle, but all writes in the current cycle have
not taken place yet.Table 3 shows the ALU Control truth table. MIPS R3000 Opcode table is also attached
at the end.

A) How many branch delay slot(s) does this processor have? (4 points)

3

B) What is the minimum clock period of the processor? (4 points)

1+6+15 = 22 ns

C) In MIPS assembly language, determine exactly what instruction is being executed in ID stage? What’s the
result?i.e., register file or data memory content changes. (6 points)

Sub $9, $7, $8
$9 = 24 – 8 = 16 Note: WB stage write to $7 with value 24

D) In MIPS assembly language, determine exactly what instruction is being executed in EX stage? What’s the
result?i.e., register file or data memory content changes. (6 points)

Lw $7, 16432($0) Note: it’s the same word address as 48($0)
$7 = Mem(48/4) = 32 Note: MEM stage SW to address 48 with value 32

E) Now implement only the hazard detection unit without forwarding, such that from the software’s perspective,
the processor has exactly one branch delay slot, exactly one load delay slot, and all hazards should be resolved
on hardware level. You are only allowed to add write enable control signals to any of the five pipeline registers,
along with necessary control logics.(10 points)
i. In order to stall the pipeline, some of the five pipeline registers should have write enable control signal.

Filling in the following table. (‘Y’ means yes needed, ‘N’ means not necessary)
PC IF/ID ID/EX EX/MEM MEM/WB

Need Write En? Y Y N N N

ii. Describe in words, or pseudocode, underwhat conditionshould each of the pipeline register be write
disabled, and forhow many processor cyclesin each case.

Pipeline
Register

Write Disable Condition

PC If ID detects BCH, disable for 2 cycles;
If ID detects LW, disable for 1 cycles;
If EX instruction writes back to the same register as ID instruction uses, disable
for 2 cycles;
If MEM instruction writes back to the same register as ID instruction uses, disable for 1 cycles;

IF/ID Same as PC disable conditions

ID/EX Never

EX/MEM Never

MEM/WB Never

Table 1: Register File Contents
Register Address Content
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 28
29 29
30 30
31 31

Table 2: Data Memory Content
Word Address Content
0 24
1 78
2 46
3 184
4 169
5 23
6 78
7 40
8 80
9 36
A 85
B 42
C 56
D 72
E 81
F 100

Table 3: ALU control truth table
ALU opcode ALU operation
00 Add
01 Sub
10 R-format

