

CS152: Computer Architecture and Engineering
Fall, 2000
Midterm 1

Professor W. Brodersen

Problem 1: Single-cycle Processor Performance (35 points)

We have a single cycle processor as we learned in class. Besides the instructions R-format, lw,
sw, and beq that the processor already implemented, the designer figured that certain software
does the following instructions extensively
cs $t $sl $s2 cslw $t $sl $s2 cslwcs $t $sl $s2

Besides the usual PC handling and instruction fetch as before,
• the cs instruction is described as:

$t <= max($sl, $s2)
• The cslw does the following:

$t <=memory [max($sl,$s2)]
• The cslwcs instruction the following:

$t <= max{$sl, memory[max ($s1, $s2)]}

So now you see that cs and 1w in above names stand for
“compare select” and "load word".

The designer plans to modify the datapath and control signal based on the processor showed in
next page. It's a textbook processor with some missing blocks and wiring to fill in. The
components that can be used are any of the blocks already present in the design and the
generalized GALU (showed above) with an additional output GREATER that equals to 1 if
Input1-Input2 >0, and equals to 0 if Input1-Input2 =< 0.

A) [10 points] Describe below in words and draw in box 1 the blocks that need to be added
in order to implement the cs and cslw instructions. Furthermore, draw in box 2 any additional
blocks to implement the cslwcs instruction. (Hint: think about doing so by adding GALU(s),
MUX(es), AND(s), and possibly new control signal(s))

i) For cs and cslw:

Box 1

Read data 1 To AND gate

Mux b output To Memory and
Mux c

ii) For cslwcs:

Box 2

Mux c output To Reg file
write data

B) [7 points] Fill in the control table below with X, 0 or 1. Add in new columns) if you need
new control signal(s). You may not need all three columns.

Instruction ALUsrc Mem-
ToReg RegWr Mem-

Read
Mem-

Write

SW 1 0 0 1
R-format 0 0 0
cslw
cslwcs

C) [9 points] You will point out the critical path, calculate the critical path delay in ns, and

hence determine the fastest clock rate in MHz . Finally, you will use some program features to
calculate the execution tine of the processor. Use the following delay parameters (ignore hold
time and regard the register delay as clock-to-Q):
• ALU or GALU, delay = 15 (ns)
• Sign/zero extender, delay = 3(ns)
• 2-1 Mux, delay = 2 (ns)
• Memory, delay (both write and read) = 10 (ns)
• Register, delay = 1 (ns)
• Register files, read delay =10 (ns), write setup time=10 (ns)

All other components' delays are ignored (i.e. zero).

i) The critical, path is (write down the components' names in order):

ii) The critical path delay in ns and the fastest clock rate in MHz:

iii) Now use a program to evaluate the performance of the processor. The program has 10% lw
instructions, 10% beq, 10% sw, 20% R-format, 25% cs, 15% cslw, 10% cslwcs. The
program contains 1,000,000 instructions in total. How much time is needed to run this
program?

D) [9 points] Please write down as simply as possible the decomposition of the cslwcs
instruction in terms of cs, cslw, 1w, sw and/or R-format instructions. Thus the original
processor can be modified only to run additional cs and cslw instructions in one cycle and
use multiple cycles for cslwcs. Estimate the critical path delay for this processor, and hence
evaluate the time needed to run the same program in part C.iii above.

i) Define cslwcs $t $sl $s2, in terms of cs, cslw, lw, sw and R-format instructions:

ii) The new critical path delay:

iii) The new execution time of the program:

Problem 2: Bus-based Multicycle Processor (30 points)

The datapath below forms a multicycle processor which uses two time-multiplexed buses for
communication rather than point-to-point connections and muxes. What are the pros and cons of such
an architecture? Is it a good idea? This problem will get you started toward a decision...

You can make the following assumptions:

• The next PC logic will automatically increment the PC when you fetch a new instruction
• Both the sign-extended and zero-extended forms of the immediate field are available to Bus

B
• The register specifiers Rs, Rt, and Rd are always correctly passed to the register file (data

written into the register file is passed from BusB)
• Both the register file and the memory have purely combinational (asynchronous) reads
• The register file, memory, and all registers are triggered by the same clock edge (with no

skew)

You can use the rest of this page for scratch space. The first question begins on the next page...

A) [10 points] Microprogram the following instructions by filling in the table. The SrcA
and SrcB fields specify which signals will be assigned to BusA and BusB, respectively.
The WrDest field specifies what component is written at the end of the cycle. This can
be any one of the state registers (A and B can be paired together in one cycle), the register
file, or memory. It is implied that all other components will not be written accidentally.
The Sequence field behaves as presented in class: it specifies whether the microprogram
should return to the fetch stage to start a new macroinstruction, dispatch to a location
specific to the current opcode, or proceed in order. You should ignore the BNE instruction
for now - it is only provided for part (C). Hint: you do not need to fill all the rows.

µAddr Instruction SrcA SrcB ALUOp WrDest Sequence
00 Fetch
01 Decode
02 ADD
03
04
05
06 ADDI
07
08
09
0A LW
0B
0C
0D
0E SW
0F
10
11

12 BNE A B Sub

--
If ALUZero
Then Next
Else Fetch

13 PC SX Add PC* Fetch

B) [10 points] One of the major drawbacks to using large buses is the massive loading caused
by so many components all connected to the same node. To approximate the effect of the increased
loading, assume that it takes an additional 10ns just to drive a signal on a bus (in other words,
assume the hollow arrowheads in the datapath schematic have a delay of 10ns). Each component
delay is copied below for your reference (you'll notice they all match the other problems).
Neglecting the BNE instruction, what is the maximum clock frequency of this processor?

Registers (clk-to-Q) 1ns
Register File 10ns
Extender 3ns
ALU 15ns
Memory 10ns
nPC Logic 10ns

C) [10 points] Calculate the execution time of the following assembly program, which adds two
1000-element integer vectors. The base pointers of the source vectors and the destination vector
are initially stored in $4, $5, and $6 respectively. Give your reasoning and/or equations in
words, and clearly substitute each term with its actual numerical value!

 ADDI $0 $8,1000
top: LW $10, 0($4)
 LW $11, 0($5)
 ADD $12, $10, $11
 SW $12, 0($6)
 ADDI $4, $4, 4
 ADDI $5, $5, 4
 ADDI $6, $6, 4
 ADDI $8, $8, -1
 BNE $8, $0, top

Problem 3: MIPS 5 Stage Pipelined Processor (35 points)
The processor shown on the next page is one implementation of a standard MIPS 5
stage pipelined processor. The specifications of the processor are as follows:

• Five pipeline stages: IF, ID, EX, MEM, WB.
• The processor does not have forwarding nor hazard implemented yet.
• Control signal are represented by dotted lines. Control bus values represent the actual control

bits top-down. Control signal values are in binary format. Data signal values are in decimal
format.

• RegisterFile writes in the first half of the cycle, and reads in the second half.
• Both instruction and data memory reads asynchronously; data memory writes synchronously.

Both memories are byte addressed. Data memory size is 16 words and only the least
significant bits are used to address the memory.
Each component has been labeled with a worst-case delay. Registers only have clock-to-Q
delay, and zero setup/hold time. Assume no clock skew.

• The diagram of the processor also includes a snapshot of the processor at the beginning of the
cycle, with necessary signal values labeled.

• Tables 1 & 2 show the contents of the register file and data memory at the snapshot time.
Assume the register file and memory have been correctly updated in the previous cycle,
but all writes in the current cycle have not taken place yet. Table 3 shows the ALU control
truth table. A MIPS R3000 opcode table is also attached at the end.

A) [5 points] How many branch delay slot(s) does this processor have?

B) [5 points] What is the minimum clock period of the processor?

C) [7 points] In MIPS assembly language, determine exactly what instruction is being
executed in ID stage? What are the changes to the register file and data memory after the
completion of the instruction?

D) [7 points] In MIPS assembly language, determine exactly what instruction is being
executed in EX stage? What are the changes to the register file and data memory after
the completion of the instruction?

E) [11 points] Now implement only the hazard detection unit without forwarding, such that from
the software's perspective, the processor has exactly one branch delay slot, exactly one load
delay slot, and all hazards are resolved at the hardware level. You are only allowed to add
write enable control signals to any of the five pipeline registers, along with necessary control
logic.
i. In order to stall the pipeline, some of the five pipeline registers should have write enable

control signal. Fill in the following table. ('Y' means yes needed, `N' means not
necessary)

 PC IF/ID ID/EX EX/MEM MEM/WB
Need Write En?

ii. Describe in words, or pseudocode, under what condition each of the pipeline registers
should be write disabled, and for how many processor cycles in each case.

Pipeline
Register

Write Disable Condition Number of
Cycles

PC

IF/ID

ID/EX

EX/MEM

MEM/WB

Table 1: Register File Contents
Register Address Content

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 28
29 29
30 30
31 31

Table 2: Data Memory Contents
Word Address Content

0 24
1 78
2 46
3 184
4 169
5 23
6 78
7 40
8 80
9 36
A 85
B 42
C 56
D 72
E 81
F 100

Table 3: ALU control truth table

ALU opcode ALU operation
00 Add
01 Sub
10 R-format

