Your Name:			_	SID Number:				
			AT AT L			(1)	/30	
		TA AI DEKKELE				(2)	/30	
Departmen	nt of Electrical Engine Computer Sciences	eering		CS 150 Prof A	- Spring 1997	(3)	/50	
	· · · · · · · · · · · · · · · · · · ·		O 11	ia 1		TOTAL	/90	
		Doom 10 Ev	\mathbf{V}	IZI nm Thuraday E	Johnson 20			
		(Open Kat	z only Calcu	lators OK 1hr	20 mins)			
Include all	final answers in lo	cations indicated of	n these pages a	nd in pen. Use sp	ace provided	for all working. If	f necessary, a	
	additional she	ets by staple at the	end. BE SURE	TO WRITE YO	OUR NAME (ON EVERY SHEE	.	
1. (a) I	dentify and name	the following two-	input logic fun	ctions:				
((i) The output is	0 iff both inputs an	re 1.					
((ii) The output is	1 provided the in	puts are differ	ent.				
((iii) The output is	1 provided no mo	re than one in	put variable is	1.			
((iv) The only time	e the output is 0 is	when both inp	outs are 0.				
1(a) 8pt	ts							
$f_i(A,B) = $				$I_{ii}(A,B) = $				
$f_i(A,B)$ is called thefunct $f_{iii}(A,B) =$ $f_{iii}(A,B)$ is called thefunct			_function.	on. f _{ii} (A,B) is called thefunction. f _{iv} (A,B) =				
			function.	$f_{iv}(\mathbf{A},\mathbf{B})$ is called the function.				
(b) /	A company is cont	rolled by a managi	ng director A	, financial direc	tor B , and tw	vo elected member	rs of the	
1	group while B nee	eds the support of	any two or m	ore other memb	ers of the gr	oup.	niti oning	
((i) Obtain a trut	h table for the con	ditions under	which a decision	n is annroved	4		
((ii) Write the mir	nimum Boolean su	m-of-products	expression for	the conditions	s under which the	decision goo	
	against A.		1	1			8	
((iii) Write the mir	nimum Boolean su	m-of-products	expression for	the conditions	s under which the	decision goe	
	against B.							
1(b) 10p	ots							
(i) Truth	n Table:	,						
_		<u> </u>	(ii) Again	st A =				
			(ii) Again	st B =				
			_					
		i − − 1						

- (c) You are to design a **single-output logic function**, **F**, for a deciding whether a four-bit binary number is **divisible by 2 or divisible by 3 (or by both).** Show the following:
 - (i) A truth table for F.
 - (ii) A Karnaugh map for F, showing a circled set of essential prime implicants.
 - (iii) A multi-level logic expression for F which contains the minimum number of literals.
 - (iv) A schematic diagram which implements your logic function. Assume complements are available.

Additional space for Problem 1

Your Name: _

(2) In all parts to this question, **assume input complements are** <u>not</u> **available** (i.e. **an inverter or an inversion counts as a gate**.) and consider the following logic function:

 $\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C}) = \overline{A} \cdot \overline{B} + B \cdot C + A \cdot \overline{C}$

- (a) Hazard analysis:
 - (i) If you were to **implement F directly as it is written**, as a two-level AND-OR network, **would it have the minimum number of gates+gate inputs?** Could you reduce it further as a two-level network?
 - (ii) If you implemented F as written, would the circuit have any single-input static hazards? What type of hazard(s) are they and how would they be excited? How would you eliminate them?

(b) Multiplexer implementation

(i) Implement F using a single 8-input, 3-control-line multiplexer.

2(b) (4pts)

(i)

(ii) Implement F using a single 4-input, 2-control-line multiplexer and a minimum number of two-input logic gates (AND, NAND, XOR, etc.) and inverters only. Show a Karnaugh map.

(c) If F were to be implemented as a PLA:

- (i) Show the PLA table format for F. Indicate all don't-cares in the product terms (rows) with an asterisk (*) and use the minimum number of rows.
- (ii) Would your PLA contain any single-input static hazards, as shown? Why?

Additional space for Problem 2

- (3) (a) Design a **clocked**, **sequential digital machine** that will output the following sequence of 2-bit values: **00**, **01**, **11**, **10** and then **continuously repeat the sequence from 01** (i.e. never return to 00). Show a state transition graph.
 - (i) **Implement** the machine using **D flip-flops**.

3(a) (i) (10pts)

(ii) **Implement** the machine using **T flip-flops**.

3(a) (ii) (10pts)

(b) Design a logic system to operate a set of traffic. The individual lights must be on in the following sequence: red, red & amber together, green, amber, red, etc. The lights change from one color (or color combination) whenever a $1\rightarrow 0$ transition occurs in the input control signal, as shown above.

3(b) (10pts)

Additional space for Problem 3