Y our N ame:			(1)	/ 20
			(2)	120
UNIVERSITY OF CALIFORNIA AT BERKELEY			(3)	120
Berkeley - davis - irvine - los angeles - riverside - san diego - san francisco		Santa barbara - santa cruz	(4)	/ 20
Department of Electrical Engineering and Computer Sciences		CS 150 - Spring 1997	(5)	/ 20
		Prof. A. R. Newton	TOTAL	/ 100

Final Examination

(Open K atz, Calculators OK, 3 hours)
Include all final answers in locations indicated on these pages. Use space provided for all working. If necessary, attach additional sheets by staple at the end. State all assumptions made.
be sure to write your name on every sheet.
(1) (20pts)
(a) Realize the following circuit using $\mathbf{O R}$ gates in the first stage and A N D gates in the second stage. D o not use any other gates (no inverters) and assume complements are not available.

(b) W rite the output f of the circuit shown below in terms of A and B in as compact a form as possible.

1(a) (5pts) Schematic diagram:

1(b) (5pts)
$\mathrm{f}=$ \qquad

1 (c) Reduce the following circuit to obtain the most compact (minimum number of gates+gate inputs) form. U se only simple gates (A N D, NAND, NOR, OR, inverter, X OR, XNOR).

(d) A four-bit binary number $\{A, B, C, D\}$, where A is the most significant digit and D the least significant digit, appears on the input to a combinational logic circuit. \mathbf{O} utput \mathbf{X} indicates whether the number is divisible by $\mathbf{2}$ without any remainder and output Y indicates if the number is divisible by $\mathbf{3}$ without remainder. \mathbf{O} btain the sum-of-products logic equations for X and Y with the minimum number of literals.

1(c) (5pts) Schematic:

1(d) (5pts)
$X=$ \qquad
$\mathbf{Y}=$ \qquad

Additional Space for Problem 1

Y our N ame:

\qquad
(2) (20pts)
(a) Consider the following state transition graph. U se an implication table to eliminate any redundant states. List all equivalent states. Show your final result as a state transition graph.

2(a) (10pts)
Equivalent states: \qquad

Reduced ST G :
(b) Consider the following reduced state table. For the state assignment $A=\{00\}, C=\{01\}, D=\{11\}$ and E $=\{10\}$, implement the machine using JK flip-flops and logic gates only. Show your flip-flop excitation and output K-maps, the flip-flop input excitation equations, the output equation, and a schematic diagram for the final implementation using as few simple logic gates as possible.

P	NS		
	$x=0$	$x=1$	
A	A	C	0
C	D	C	0
D	D	E	1
E	A	E	0

2(b) (10 pts)
(i) Excitation and output K-maps:
(ii) Flip-flop input excitation equations and output equation:
(iii) Schematic diagram:

Y our N ame:

\qquad
(3) (20pts)

A one-bit shifter is defined as follows:
$\mathrm{y}=\left\{\begin{array}{clc}x_{-1} & \text { if } & d=1, s=1 \\ x_{+1} & \text { if } & d=0, s=1 \\ x & \text { if } & s=0\end{array}\right.$
(a) Obtain an implementation of the one-bit shifter using a single $\mathbf{4}$-input, $\mathbf{2}$ select line M UX only.
(b) Show how it would be possible to build an \mathbf{n}-bit shifter (shift each bit of an n-bit word $\left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{n-1}\right\}$ one bit position up or down) using a number of your one-bit shifters from part (a) above.

3 (a) (5pts) 0 ne-bit shifter:

3(b) (5pts) n-bit shifter:
(3) (continued) Consider the function: $f(A, B, C, D)=\Sigma m(3,4,8,9,10,13,14,15)$
(c) Implement this function using a single 4-input, 2 select line M UX and as few additional gates as possible. A ssume complements are not available.
(d) Implement the function using a minimum number of 2 -input, 1 select line $M U X$'s and a single 4 -input, 2 select line M U X only (no additional logic gates). A ssume complements are available.

3(c) (5pts) Schematic:

3(d) (5pts) Schematic:

\qquad
(4) (20pts)
(a) Show a merger diagram for the primitive flow table shown at right. Show the merged flow table for the design.

X1 X2				Z
00	01	11	10	
(1)	6	5	2	0
1	4	3	(2)	0
8	4	(3)	7	1
8	(4)	3	7	1
1	6	(5)	2	0
1	(6)	5	2	0
8	6	5	(7)	1
(8)	4	5	7	1

4(a) (10pts) M erger D iagram:

Merged flow table:

Additional space for Problem 4(a)
(b) \mathbf{O} btain a race-free state assignment for the merged flow table shown below. Y ou are to assign the codes for the two unassigned states and you may not use any additional states to implement the racefree assignment. Show your solution by filling in all fields (including a glitch-free output assignment for Z) on the empty table shown below.

4(b) (10pts) Final merged flow table and state assignment:

Additional space for Problem 4(b)
\qquad
(5) (a) Design a counter which produces the following binary sequence: $0,1,3,7,6,4$ and then repeats. U se three clocked T flip-flops and logic gates only. U se a minimum number of additional logic gates.
(b) How would you use a ROM to perform the addition of two four-bit 2's-complement numbers? H ow many address lines would be required? How many data lines? Show the binary values that would be applied to the address lines and observed on the data lines of the R OM when performing the following computations:
(i) $(+1)+(+2)$
(ii) $(-1)+(+1)$
(iii) $(+7)+(+6)$ (iv) $(-6)+(-1)$

5(a) (14pts) T flip-flop input equations:

A dditional Space for Problem 5

Additional Space for W orking Problems

