\qquad

UNIVERSITY OF CALIFORNIA AT BERKELEY

```
BER KELEY - DAVIS • IR VINE - LOS ANGELES • RIVERSIDE P SAN DIEGO - SAN FRANCISCO
```

CS 150 - Spring 1994
Prof. A. R. Newton

Final Examination G roup 1

Room 1 Physical Science, 8am Friday 5/ 13
(O pen K atz only, Calculators OK, 3 hours)
Include all final answers in locations indicated on these pages. U se space provided for all w orking. If necessary, attach additional sheets by staple at the end. BE SURE TO WRITE YOUR NAME ON EVERY SHEET.
(1) (16pts) Consider the following logic functions expressed in standard sum-of-products form:

$$
\begin{aligned}
& \mathrm{f}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(2,3,5,7,9,11,14,15)+\sum \mathrm{d}(1,10) \\
& \mathrm{f}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(2,3,7,9,11,15)
\end{aligned}
$$

(a) Construct a K arnaugh M ap for each function and write the B oolean expression for each function as a minimum sum-of-products realization (minimum number of (gates + gate inputs.)) Show the product terms you have chosen to implement each function on the maps.
1(a) 6pts

$f_{1}(A, B, C, D)=$ \square $f_{2}(A, B, C, D)=$ \qquad
(b) If the two functions are to be implemented together (i.e. as a single, two-output, four-input function), construct a K arnaugh M ap for each output and show the product terms that represent the minimum number of (gates + gate inputs) for the combined, tw o-output function on the maps. W rite the B oolean expression for each output.
1(b) 6pts

$f_{1}(A, B, C, D)=$

$$
\mathrm{f}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=
$$

(c) Considering the first function $\mathrm{f}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(\mathbf{2}, \mathbf{3}, \mathbf{5}, \mathbf{7}, 9, \mathbf{1 1}, \mathbf{1 4}, \mathbf{1 5})+\sum \mathrm{d}(\mathbf{1}, \mathbf{1 0})$ only, draw a schematic diagram for f_{1} that uses the minimum number of logic gates. Use only AND, OR, and inverter gates and assume input complements are not available (i.e. an inverter counts as a gate.)
1(c) 4pts

Additional space for Problem 1

Y our N ame: \qquad
(2) (16pts) Consider the logic function shown below in K arnaugh M ap form. In all parts to this question, assume input complements are not available (i.e. an inverter counts as a gate.)

(a) D erive an implementation of this function using a single 8-input, 3-control-line multiplexer and a minimum number of logic gates.

2(a) (4pts)
(b) D erive an implementation of the function using a single 4-input, 2-control-line multiplexer and a minimum number of two-input X OR gates and inverters only.

2(b) (4pts)

Y our N ame:
(c) Implement the function using a minimum number of simple logic gates (A N D, OR, N A N D , NOR, XOR, XNOR, and inverters only.)
2(c) (4pts)
(d) Construct the PLA -format table representation for the function in AND-OR form. H ow many product terms would an A ND-OR PLA implementation require?
2(d) (2pts)

Product terms:

(e) If the function were implemented using a R OM , how many R O M storage locations would be required? H ow many address inputs would the ROM have?
2(e) (2pts) Storage L ocations: _____-___ A ddress inputs: ____-_-_-_

Additional space for Problem 2
(3) (19pts) Consider the following state-transition graph which is to be implemented as a clocked, synchronous sequential circuit. If State d is the reset state and the states are encoded as State a $=01$, State $b=11$, State $c=10$, and State $d=00$:

(a) Construct a state transition table for the machine in terms of input X and present-state $\left(\mathbf{y}_{\mathbf{1}} \mathbf{y}_{\mathbf{2}}\right)$ for output Z and next-state $\left(\mathbf{Y}_{1} \mathbf{Y}_{2}\right.$.)
3(a) (4pts)
(b) U se K arnaugh map(s) to obtain the reduced next-state and output equations for the machine. Show your Karnaugh map(s.)
3(b) (6pts)
\qquad
(c) U se the reduced set of equations to obtain a circuit diagram for an implementation of the machine. U se the minimum number of logic gates (AND, OR, NAND, NOR, XOR, XNOR, or inverters) and positive-edge-triggered toggle (T) flip-flops only.
3(c) (6pts)
(c) U sing your next-state table from Part 3(a) above, construct an implication table and check for state equivalence. List the equivalent states. Enter the word NONE below if you cannot find any equivalent states from your table.

3(d) (4pts)

Equivalent States:
Additional space for Problem 3
(4) (14pts) A clocked, synchronous sequential circuit is to be designed as follows:
"The circuit is to have a single input, X, that is used to control two outputs Z_{1} and Z_{2}. W hile X is $1,\left(Z_{1}, Z_{2}\right)=(00)$. W hen X becomes 0 , the outputs $\left(Z_{1}, Z_{2}\right)$ begin the sequence $(00,01,11,10)$. If they reach the value 10 they hold that value until the input changes to 1 again."
(a) C onstruct a state transition graph (ST G) for the machine in M ealy form.

3(a) (4pts)
(b) C onvert your ST G to M oore form and make a state assignment that minimizes the amount of output logic needed for a M oore implementation of the machine.
3(b) (4pts)

Y our N ame: \qquad
(c) D etermine the next-state and output equations for your machine and implement the circuit using positive edge-triggered D flip-flops and a minimum number of two-input NAND gates only. A ssume X comes from the output of another flip-flop and so the complement of X is also available.

3(b) (6pts)

Additional spacefor Problem 4
(5) (18pts) (a) W hat is a fundamental-mode asynchronous circuit? G ive a concise definition.

5(a) (4pts)

C onsider the state diagram for the asynchronous sequential machine show below.

(b) D raw a primitive flow table for the machine, indicating all stable states and outputs.

5(b) (4pts)
(c) W ith the code for State a given as all $\mathbf{0}$'s derive a race-free state assignment for the machine using a minimum number of internal state variables. Show all working.
5(c) (4pts)
$a=\ldots \quad b=\ldots \quad d=$

Y our N ame:
(d) Provide a schematic diagram for the machine using a minimum number of logic gates (A N D, OR, NA ND, NOR, XOR, XNOR, or inverters). Indicate your state variables as labels on buffer symbols. Ensure that the output logic cannot produce glitches and state why that is so.
3(b) (6pts)

Additional space for Problem 5
(6) (17pts)
(a) D raw the block diagram for a sequential, 32-bit full-adder that uses a single, one-bit full adder and two 32-bit serial shift registers to perform addition of two unsigned, 32-bit binary numbers. Explain how the adder operates and how overflow would be detected if it occurred.
6(a) (6pts)
(b) W ith the addition of a single " add/ subtract " input and logic gates, modify your design to perform addition or subtraction of two unsigned binary numbers.
6(b) (4pts)

Y our N ame:
(c) D erive a block diagram for a bit-serial sequential circuit that can be used for comparing the relative magnitudes of tw o 32-bit numbers, $A<31: 0>$ and $B<31: 0>$, stored in sign-magnitude form, where bit 31 is the sign bit. D o not use subtraction. D escribe how your circuit operates.

6(c) (7pts)

Additional space for Problem 6

