
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Sciences

EECS150 J. Wawrzynek
Spring 2010 May 10, 2010

Final Exam

Name:

ID number:

This is a closed-book, closed-note exam. No calculators or any other electronic devices, please.

Read all the questions before you begin. Each question is marked with its number of points
(one point per expected minute of time). Although you might not need it, you have 3 hours.

You can tear off the spare pages at the end of the booklet and/or use the backs of the pages
to work out your answers. Neatly copy your answer to the places allocated for them.

Neatness counts. We will deduct points if we need to work hard to understand your an-
swer. Simplicity also counts. In the design problems, correct simpler designs with fewer
components will be awarded a higher score than more complex designs with more components.

Put your name and SID on each page.

1



problem maximum score

1 6pts

2 6pts

3 8pts

4 22pts

5 16pts

6 12pts

7 10pts

8 6pts

9 20pts

10 8pts

11 6pts

Total 120pts

2



1. Cascading Multiplexors [6pts].

Consider the multiplexor circuits show below. Using algebraic manipulation, derive simplified
expressions for in0 and in1, that guarantee equivalence of y in both circuits. Show your work.

0

1

0

1

a

b

c

d
y

x

x
in0

in1
y

0

1

3



2. Three-value Logic Elements [6pts].

In circuit simulation, often the value “x” is used to represent unknown signal values. Therefore
signal values can take on one of three values, “0”, “1”, or “x”. Circuit simulators attempt to
propagate 1’s and 0’s whenever possible, minimizing the propagation of x’s.

Fill in the truth table below to indicate how a circuit simulator should treat each logic gate,
given each set of input values. Remember, your goal is to minimize the number of x’s propa-
gated.

a b a OR b a AND b NOT(a) a XOR b

1 1

1 x

1 0

x 1

x x

x 0

0 1

0 x

0 0

4



3. K-maps [8pts].

Below is the truth table for function f. The symbol “-” is used to represent “don’t care”.

abcd f

0000 1

0001 1

0010 -

0011 0

0100 -

0101 1

0110 1

0111 1

1000 1

1001 1

1010 -

1011 0

1100 0

1101 1

1110 0

1111 0

(a) Using a K-map, write a reduced expression for f in products-of-sums (POS) form:

(b) Using a K-map, write a reduced expression for f in sum-of-products (SOP) form:

5



4. Tree Engine [22pts].

In this problem, you are asked to design a hardware engine for traversing a tree data structure
stored in memory. The tree is represented in memory as a collection of nodes. Each node
contains three n-bit fields: value holds a two’s complement integer, left holds a pointer to the
left subtree, and right holds a pointer to the right subtree. All 0’s in a pointer field is used to
indicate a “null” pointer (no subtree). Trees are stored in a n-bit wide memory block. The
fields of a node, value, left, right, are stored in consecutive memory locations. The tree root
node always begins at address 0.

Your task is to design the datapath and specify the controller for a hardware block that traverses
a tree and outputs the maximum node value (the max over all the value fields of all the tree
nodes). Your circuit should output the final max value, (max), and a done signal (done). Your
design objective is to minimize the number of clock cycles required for a tree traversal, then
the cost.

You are allowed to make instances of the following design blocks:

• Asynchronous read memory with single read port, n-bit wide address (addr), and
n-bit wide data output (dout). This block is given to you preinitialized storing a
tree.

• n-bit wide register with clock enable (ce), and reset (rst) inputs.

• n-bit wide 2-to-1 multiplexor.

• n-bit wide adder/substractor block with function control (SUB).

• n-bit wide “equal zero” comparator. Takes an n-bit word and outputs a 1 if the
input is =0.

• n-bit wide stack block, with clock enable (ce), synchronous push/pop control (PUSH),
and a empty flag (EMPTY). (For a push operation, set PUSH=1, for pop, set
PUSH=0.) The top of the stack is always available on the output dout. The data
input din is used for the pushing data onto the stack (when PUSH = 1). EMPTY is
an output signal that is =1 when the stack contains no elements.

• Simple logic gates.

(a) In “register transfer language” style pseudo-code, write out the control algorithm.
(Remember to use “,” to separate transfers that occur on the same clock cycle and
“;” for transfers on consecutive clock cycles.)

6



(b) In the space below, neatly draw your datapath of the tree engine. Circle the control
signals—the signals you intend to generate from a controller external to the datapath,
or signals from the datapath back to the controller. Label all circuit inputs and
outputs.

7



5. Stack Design [16pts].

In this problem you will design two versions of the internal details of a stack block, also known
as a LIFO (last in first out) data structure. This is a synchronous block that on each clock
cycle, either pushes a word, pops a word, or performs no action. The block has the following
interface:

• clk: Clock input.

• Din: Data input.

• Dout: Data output.

• push: Active high control for push operation.

• pop: Active high control for pop operation, take priority over push.

Stacks are usually built using one of two primary methods. For relatively small stacks, one
method is to use a shift-register like structure that moves data in one direction on a push
operation and the opposite direction on a pop operation. The second method, used for relatively
large stacks, uses a memory block, similar to how FIFOs are often implemented.

For parts a) and b) below, you may make instances of the following blocks. Remember to keep
things as simple as possible.

• Simple logic gates,

• n-bit wide 2-to-1 multiplexor,

• n-bit wide register with clock enable (ce) and reset (rst).

• n-bit wide adder/substractor block with function control (SUB).

(a) In the space below, neatly draw your circuit that uses the shift register approach
described above, for a 4 element stack.

8



(b) In the space below, neatly draw your stack circuit using the memory block approach
described above.
For this part you may used any of the design blocks from part a), plus you must
additionally use:

• A single-ported memory block with asynchronous read, n-bit wide address (Addr),
and n-bit wide data output (Dout), n-bit wide data input (Din), and a write en-
able input (we).

9



6. Finite State Machine [12pts].

Consider the design of a Moore style FSM with the following specification. In addition to the
clock input (clk), the machine has two inputs (in) and reset (rst), and a single output (out).

When the machine is reset, the output is driven to a 0 and remains at a 0 until the machine
recognizes an input sequence of the form:

1 ∗ ∗1 ∗ ∗1

where ∗ could be either 0 or 1. When the desired sequence is seen, on the rising edge after
the final 1 of the sequence, the machine sets its output to a 1 for one cycle, then sets it to 0
until another sequence is recognized. Sequences recognized are non-overlapping. (Therefore, a
sequence such as 1001001001 would be recognized as 1 occurence of the pattern, followed by
the first 1 of a new pattern.)

(a) Draw the state transition diagram from the FSM. Label all circles and arcs. Label
your states S0, S1, S2, ...

10



(b) Based on your state transition diagram, draw the gate level circuitry for the FSM,
with a one-hot encoding of the states. Assume that the flip-flops available to you
have only data in (d) and clock (clk) inputs, and data out (q).

11



7. NAND/NOR circuits [10pts].

(a) Convert the circuit shown below from all NANDs to all NORs (simplicity counts).

a

b

c

(b) Convert the circuit shown below to all NANDs (simplicity counts).

a

b

12



8. Gray-code Counter [6pts].

A 2-bit Gray counter generates the following sequence of values:

..., 10, 00, 01, 11, 10, 00, 01, 11, ...

Derive a counter circuit based on flip-flops and simple logic gates that generates the Gray
sequence. A reset signal is not necessary. Show your work and final result.

13



9. Unsigned Equality Checker Circuit [20pts].

Consider the design of a circuit that compares two unsigned integers. Specifically, the circuit
takes two N -bit unsigned integers inputs, A and B, and generates a single output bit (f) equal
to 1 iff A > B.

As you know, a substractor circuit can be used for this function. However, a circuit opti-
mized specifically for comparison is simplier. In this problem you will investigate different
performance–cost tradeoffs for this optimized comparison function.

(a) Derive the simplest circuit to achieve this function. This circuit (similar to a ripple
adder) will have O(N) cost and delay O(N).
Draw an instance of this circuit for N = 4. Show your work.

14



(b) Derive a strategy for improving the performance of your circuit to have delay
O(

√
(N)) and O(N) cost. Draw a circuit to illustrate the structure of your cir-

cuit for N = 16.

15



(c) Derive a strategy for improving the performance of your circuit from part a) to have
O(log(N)) delay and O(N) cost. Draw a circuit to illustrate the structure of your
circuit, for N = 8.

16



10. Constant Multiplier [8pts].

Consider the design of a circuit for multiplying a constant, C, with a signed two-complement
variable, X, such that Y = C ×X.

In this problem, let C = 1310, and assume X is a 6-bit variable. Using only full-adder blocks (1-
bit adders), in the space below, draw a multiplier circuit. Your design objective is to minimize
the total number of full-adder blocks, as well as the delay from input to output. Give priority
to cost over delay.

17



11. Scheduling [6pts].

Assume we have a datapath with three arithmetic blocks: two adders (add1), and (add2), and
a single pipelined multiplier (mult). The multiplier has two pipeline stages.

The arithmetic blocks are interconnected with a set of switch elements, so that any block
can send its output to any other block. Furthermore, the blocks are separated with pipeline
registers.

The datapath is connected to a memory block that holds multiple arrays of data values,
A, B,C, D and E. Up to 4 data values can be read from the memory on a single clock cy-
cle.

Your goal is to generate the schedule for iterative execution of the computation graph shown
below on the datapath described above using as few cycles as possible.

The result value ri for each iteration of the graph is sent out of the datapath as an output
signal (not written to the memory).

++

*
+

ai bi ci di

ei

ri

Without applying any algebraic manipulation, or modifying the structure of the graph, derive
the information needed for scheduling the computation, and illustrate your solution by filling
in the schedule chart for four iterations of the computation (generating r0, ..., r3).

resource cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

18



19



Spare page. Will not be graded.

20



Spare page. Will not be graded.

21



Spare page. Will not be graded.

22



Spare page. Will not be graded.

23



Spare page. Will not be graded.

24


