CS 152 Computer Architecture and Engineering Fall 1998 R. W. Brodersen

Midterm \# 2

Pleaswrityoumaman8IDn Yohavthrehour§othisxam
eachage afiisxamThnumbeqfointforacproblenis budgetoutimaccordingly.

$\#$	Possible Score	
1	35	
2	15	
3	25	
4	25	
Total 100		

Problem 1: Multi-cycle Datapath [40 points]

Fothiproblempleasæfetthmulti-cycldatapa anthoutpuNEGindicateifhesulisegativeTh theontrolleandabesetbonditionallyrite statmachinisesaflertimtheegister advancebgneverøyclEacmstructiofiahi C2,achfihiclindependentlyign-extendedRegisters show(butatonnected)helocknlyppliexth operatioAlkritenablearactivbigh.
thrawbelowThALUaperformitheA+BA-B
NEGignahftebeingelayedneycléfethro ongthfoumainegister($(P A R G T) h$
(programountensisittemtherwisehstatma multi-cycldatapathontaintswimmediatesermed andemoriearelockednHavaCLKinput
writeperationillMEMhnHaseffecthe
ugh
eontrol chine and ead

a) Micro-Programming

Filithealuemissinghtablbelow givenThphraseilineGïndicateth athregister
ALGperationanegativassthkeywordNEGithe
fothgiveinstructionsThRTEpecificatiofior writshoulbpreformednlifhæsulufiprevi thinstructionis
ous tablbelowindicathibehavior.

ADIRRC(adimmediate)
RR +C 1
RP+1
SBINC, $1\left(\begin{array}{c}\text { sibtractn } \\ \text { Uranchfeg })\end{array}\right.$
RE1-R
RP+C2NEG
ElsRP+1
SWIR+C2Rwamemordata)
$\mathrm{AR}+\mathrm{C} 2$
RR-R
$\mathrm{T}<\mathrm{M}[\mathrm{A}]+\mathrm{T}$
$\mathrm{M}[\mathrm{A} \nmid \mathrm{R}$
$\mathrm{RP}+1$
IIGR(Gihcremenff > C1)
\leq C(theesulinatrittetmegister)
RR+iNEG
RP+1

| Inst./Cycle | P_W | A_W | R_W | T_W | D_W | MUX1 | MUX2 | ALU | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ADD | 0 | 0 | 1 | 0 | 0 | C1 | R | ADD | | | | | |
| 2 | 1 | 0 | 0 | 0 | 0 | P | 1 | ADD | | | | | |
| SBN | 0 | 0 | 1 | 0 | 0 | | | | | | | | |
| 2 | NEG | 0 | 0 | 0 | 0 | | | | | | | | |
| 3 | 1 | 0 | 0 | 0 | 0 | | | | | | | | |
| SWP | 0 | | | | 0 | R | C2 | ADD | | | | | |
| 2 | 0 | | | | 0 | R | R | SUB | | | | | |
| 3 | 0 | | | | 1 | D | T | ADD | | | | | |
| 4 | 1 | | | | 0 | P | 1 | ADD | | | | | |
| IIG | | | | | | | | | | | | | |
| 2 | | | | | | | | | | | | | |
| 3 | | | | | | | | | | | | | |

b) DatapatDelay

Usinghdelayaluegivebelowcalculatthminimum nstallimbetweetheompletionfninstructi
cyclimfathmulti-cycldatapathAssumthere
is

Component	Delay
Sign-Extender	is
4-Mux	Qs
ALU	As
IMEM	Qs
DMEM	As
Registerlk-Q	hs
RegisteSetup	Qs
RegisteHold	As
ContrdLogic	hs

Minimunyclime: \qquad

c) CompleMicro-programming

Filithgivetablevithicro-codimplementati
BERC1C2 2 BranchB+CRegisteRqualsonstantilhe valumegistefisqureserved.
oufhBEQThdefinitionBE(Axfollows:
valuin registeRemainsnchangedhe

HinthRTbperationtR-Rwilllwayslace thealuenegistef.

Inst./Cycle	_W A	W R_W	T_W	D_W	MUX1	MUX2	ALU		
BEQ									
2									
3									
4									
5									
6									
7									
8									
9									
10									

Fopartdand)yeonsideaingle-cyclimplemen ofxecutingollowingouimstructions:

d) Multi-CyclePI

Assuminghinstructiomiixtheablbelowhownuc implementatioheomparetthmulticyclimplementat answerelativtheycleimafimulti-cycle
klowerathminimumyclàmaffingleyc le iowhilmaintainingquaderformandelvyour versiofi.e.,"Thsingle-cycldatapathahava thait(0fmeslower")

Instruction	Frequency
BAD	10%
BLE taken	30%
BLE adaken	20%
LAD	30%
SIG	10%

Allowablincreasinyclime: \qquad

e) Multi-CyclaSingle-CyclConversion:

Filithmissingiecesfinewingle-cycldata cyclinstruction(BADBLB,ADan8IGeachn ofachnstructiomasecessaryfodonteed YomagnlædMUXe(sansizeadderandire Use supporany instructiongiveiparack,onsideaddersnMUXets showngontrodignals.
patbelowthailsapablefxecutinghfoumul singleycldJsthmicro-codedeterminthfun componenthaislreadshowithdiagramcross theninimurhardwarequiredyodnateetb befquivalentreGodnateetb

Problem 2: Pipelining, Datapath Hazards, Forwarding

YoworkotePGianNoTthmarketingepartm CPHathbesterformancethmarke eidiff engineersavdecidethathbestrationcreasel int $\overline{6}$-stagpipeliñhisvibaccomplisheby thMEMAtagatherisouMEManMEM2Assumøoaan theewlyplistagesnd fetaimesishowbelow.

Thixfoursexpandshaumbeafforwardingaths. thforwardingchemほodecidtfirsisomæest
a) Othpipelineshowbelowdrauithforwarding instructionhowtthlefffachipelinishe th $\mathrm{H}_{\text {tagesideishpicture. ghfirsADD }}$ Shownlghforwardingaththatresebtheode processoripossiblehattallwibeequiret Assumth theegistefileadwritbefora
entasecidethae, vethougthflagship iculsebecaushamolockatthet her ockatiksplithstandardMIPS-style-stagpipe line plittinghEXEtagintEXE ${ }^{2}$ \#EXH2ikewisfor plittinghEXEtagintEXEAnWXB2ikewisfor
notccessnysefudatithpositiobetween Threysipelinœepeated
pathshatrexerciseibachyclehe instructiothaisssuedenterthwtageithe cyclehere iissueabyclehtirsfUhssuedincle, showmotlhpossiblforwardingathishe mesolvthbazardyhichowilnnumeratipart reaithsameycle.

Asendesigneryogethjobfesigning cases.
etc.
b).
youanndforwardhthmiddldXBMEAATages

ADD $\$ 2 \$ 3 \$ 4$ IF-ID-E1-E2-M1- M12-WE
SUB $\$ 5 \$ 6 \$ 7$ IF-ID-E1-E2-M1-M2-ME
ADD $\$ 7 \$ 2 \$ 4$ IF-ID-E1-E2-M1-M2-WE

LW $\$ 9$ 12(\$2) IF-ID-E1-E2- M1-M2

ADD $\$ 6 \$ 7 \$ 2$ IF-ID-E1-E2- $111-$ M2
ADD $\$ 11$ \$2 $\$ 7$ IF-ID-E1-E2-M1-M2-WE
ADD $\$ 11 \$ 7$ \$6 IF-ID-E1-E2-M1-M2-WE SUB $\$ 10 \$ 9 \$ 7$ IF-ID-E1-E2-M1-M2-MB ADD $\$ 10 \$ 9 \$ 11$ IF-ID-E1-E2-M1-M2-WE
$L W$ \$13 24(\$11) IF ID E1-E2-M1-M2-WB
b) Itheoursefforkinghroughabovinstruction realizethatherarstikomeaseshernom simplyoteadbthtimthnexinstructioneeds intthpipelinestallinghnexinstructionyhich usinghdataoontinuprocessingohaveomepai nowohavtfigureutownangubbleseetbin fornelockycTEheasesifterestrshow tbinserteflathblockfodshowringrdetro
snthforwardingaththatreeededyou

orwardinganesolvthdependenci	is
Thenlyatoesolvthbazaridionsert	bubble
needithdata, hilallowintheurreninstruction	hais
thominstructiosequencessithesproblems,nd sertedacha@nbubblisquivalentstall	
Evilitheotalumbedf	chateed

Instructiofequence	TdtaNumbealibubbles
$\begin{aligned} & \text { A\$2 } 4 \\ & \text { \$WB } 3 \end{aligned}$	
$\$ 24(\$ 6)$ A\$385 \$ 5	
$\begin{aligned} & \$ 51,1(\$ 3) \\ & \$ 51,6(\$ 8) \end{aligned}$	
$\begin{aligned} & \$ 431(B) \\ & \$ 531(\$ A) \end{aligned}$	
LW \$62(\$5)	
$\begin{aligned} & \text { A\$W\$2} \\ & \$ 4(\$ W) \end{aligned}$	
$\begin{aligned} & \$ 70(\text { SW2 }) \\ & \text { XQ } \end{aligned}$	

c) ThbardwargroupafinallbuiltactuaCPUba exhaustiveltesthehipHoweverthtestoardor Writtheestodthatxercisesverforwardingath
sedyouthestingrombormouiobo
thePUaonlgma \mathbb{R} OMdistorthte
stode. ithePUodoateettesthbubbleases.

Problem 3: Cache and Virtual Memory

a) Desigĥ-wasetssociativeachgivethfol
lowingonstraints:

- Totadizetavords
- Blockizefords
- Worみengtbrbits
- Totadddressablmemorspaci $\mathbf{0} 0241$ Kivord-addressedvor ds
- Write-bacNrite-allocatpolicy
- Leaffrequentlgseflifureplacement policy
i.) Hownanฐomparatorsmequiredhidesigmend whatrtheiwidth(ibits) Rplaigour reasoning.
ii.) Hownanyegistersmequiredthidesigmad hatrtheiwidth(ibit\$)xplaigour reasoning.
iii.) WhattatubitsrneededbracblocEXplai
iv.) Draviagramfhaddresbitithimachine
youreasoning.
v.) Filtheablbelowindicatinghetherach requesisachbitmiss:

Address	3	1	7	9	5	18	13	11	2	6	27	15	22	30				
H/M																		

vi.) Drablbelowhatepresentthfinatt
ataffeache.
b) Whapagsize(syouldlloyparalledachanđLB ookupshereforspeedingphysicadddress translatioExplaiyournswer.
c) Assumyourachisisl oweth ayrouprocesso requiringwolockycl@missyosuffepenal ratiflther instructiontakenelockyclenthtotalumbed datandistructiomemoryequests compos巴5\%ffeotahstructionount.
d) Wdecidtsparthbidelajanurachbrever CPIIFittsakeneyclemissetaksixyclesth requeststilbta15\%fienstructionount.
Rquew witer
tintdireanappedrganizationomputhnew
missati80\%anthrumbeufatandhstruction
e) Explaihowhangingdireanappedachwouldause rate.
f) Considenachinwithree-tieredirtuahemo rateis 00% gomissesccuathphysicadiskev
ryierarchydescribedeloNotthathsumf
hit el.

$\begin{gathered} \text { Level } \\ \text { Memoryype } \end{gathered}$	LCache On-diSRAM	Leache Off-chipRAM	MaiMemory DRAM	PhysicalDisk IDHARBrive
Hildelay	dycle	4ycles	15ycles 500,000yc	es
HiRate	15.7\%	28.8\%	55.4\%	0.1\%

i.) CalculattheP面hemoryccessetsota $20 \% \mathrm{f}$ thinstructionountndbtheimstructiontaken e cycle.
ii.) Calculatthtimeequiretboadl000\%ordfrondisk areWantheriomfixedccestimfornye abovapply.
thePfrequencid 00 MHzalinstructions queftrorthphysicadiskssumthathbitates

Problem 4

Thenergyndelaisorobperatioanthener
Thiproblemsethdatapathboveoxecuthfoll
gishdissipatioperycle.
owingrogram:

```
sum1 = 0
sum2 = 0
FOR I = 1,2 DO
{sum1 = sum1 + a[i]b[i]
    sum2 = sum2 + a[i]
```

Assumbheegistefilislreadloadedithllece
ssardata
$\$ s 1=a[1] \quad \$ s 2=a[2]$
\$t1 $=\mathrm{b}[1] \quad \$ \mathrm{t} 2=\mathrm{b}[2]$
\$s3 = sum1 \$s4 = sum2
aCompilthisrograminttmeachinkanguagasing hfollowingormatUnrothboop andeordethe instructionsminimizthexecutionime

Anux	Bhux		Rs	Rt	Rd We		Comments
1/0	1/0	\$Rs	s \$RF	\$Rd	1/0		

bWhåthminimurayclėmendxecutiotimE program?
othidatapathoxecuthabove

Bperatedtmaximumatewhås thpowedissipated?
dAdsinglpipelinæegistetthidatpathoptima positiouffeg isterthdatapaththprevious
elWhathneuninimuraycltimexecutiotime atedtmaximumatmexecuthprograyowrote programbongeworks)
lldecreasitsycleime shothe page.
energyndoweassuminisper-
isectioa)(Ignorthfadthathe
fiffeoltagieducedathdelayssetupnHol
formula:

Breducinghroltagthpointherthexecution registew asddedyhaidmergyonsumedWhais
dmeincreasbthfollowing
timberamalseforthpipeline thpowedissipation?

