
Midterm 2

NAME:________________________ SID_____________________

Instructions
Read all of the instructions and all of the questions before beginning the exam.

There are 5 problems in this exam. The total score is 100 points. Points are given next to each
problem to help you allocate time. Do not spend all your time on one problem.

Unless otherwise noted on a particular problem, you must show your work in the space provided,
on the back of the exam pages or in the extra pages provided at the back of the exam. Simply
providing numerical answers will only result in partial credit, even if the answers are correct.

Draw a BOX or a CIRCLE around your answers to each problem.

Be sure to provide units where necessary.

GOOD LUCK!

PROBLEM POINTS MAX
1 20
2 20
3 15
4 25
5 20

Problem 1
 20 points
a) In one or two sentences, why don’t we build static CMOS with PMOS transistors in the pull-
down network and NMOS transistors in the pull-up network? (2 points)

b) Any Boolean function can be implemented using multiplexers alone. (2 points)

True or False? (circle one)

c) If you were to build a 64:1 multiplexer from 4:1 multiplexers, you would need
how many 4:1 multiplexers? (2 points)

d) Fill in the following table with delay and cost as a function of n for each type of
n-bit adder structure (use the “big O” notation). (6 points)

Adder type delay cost
Ripple carry

Carry-Look-ahead
Carry-Select

e) Draw the circuit-level diagram of an unclocked SR latch. (3 points)

f) What logic function does this circuit perform? A logic table and logic expression is required
answer. (5 points)

OUT

VDD

VDD

VDD

X

Y

Problem 2 20 points
Consider the datapath below. All solid lines are 8 bit wide, the four dotted lines are 1 bit control
lines. The functional unit at the right of the datapath is a subtractor; at the left is an adder.
Assume you can only write to a single register per cycle. Two wires are shorted only if there is a
black circle at the intersection.

a) Write down ALL of the architectural level register transfer operations (e.g., Reg ← Reg op
Reg) that can be executed in a single processor cycle. (5 points)

b) Using only the four registers and two functional units (ADD, SUB), design a bussing
structure (ie. wires + muxes) for the datapath so you can implement ANY register-to-register
ADD or register-to-register SUB (including the same register used as both sources and the
destination). Both addition and subtraction should take place on the same cycle, but only one of
those two results will be stored. Your bussing design must use the fewest possible additional
wires to accomplish this task. Draw your bussing structure below. (7.5 points)

c) Revise your solution from b) for the case where ADD and SUB can occur simultaneously, but
never have the same target register (it wouldn’t make sense to write something into the same
register from two different places at the same time!). Your design must use the fewest possible
wires! (7.5 points)

Problem 3 15 points

The easiest way to perform arithmetic operations using the sign-and-magnitude system is to
convert to 2’s complement for your calculations. You are given the following components:

• A 4-bit universal shift register

• As many 1-bit full adders as you need

• As many 2-input XOR gates as you need

• As many 2-input NAND gates as you need

Design a circuit to convert a 4-bit sign-and-magnitude number to 2’s complement number.

Problem 4 25 points

Back in the days of mainframe computing, there were two standard for textual information
interchange – ASCII and EBCDIC. You are implementing a counter that counts in hexadecimal. The
output of the counter is either in ASCII (0-9 = 48-57, A-F = 65-70) or EBCDIC (0-9 = 240-249, A-F
= 193-198) depending on the value of a control switch (C = 0 → ASCII, C = 1 → EBCDIC). You are
provided with the following parts:

• A 4-bit binary counter (Pins: CLK, RESET, C3-C0 outputs)

• A 4:16 DEMUX (Pins: G enable, S3-S1 select lines, Z output)

• A 32×8 bit ROM (Pins: A4-A0 address lines, D7-D0 data lines)

• As many NAND gates as you need

You may use some or all of the parts above. You may choose to program the ROM with whatever
values you need.

a) Design the ASCII/EBCDIC counter. Use block diagrams for the individual parts and label the

pinouts. (15 points)

b) Fill out the following table with the values that you chose to store in the ROM. You should write
the data in decimal for convenience (and ease of grading). (10 points)

Address Data Address Data Address Data Address Data

00000 01000 10000 11000
00001 01001 10001 11001
00010 01010 10010 11010
00011 01011 10011 11011
00100 01100 10100 11100
00101 01101 10101 11101
00110 01110 10110 11110
00111 01111 10111 11111

Problem 5 20 points

a) Write your Verilog below. When the Initialize signal is true, load A and B into the
Multiplicand and the Multiplier, and set the Product to zero. When Initialize is no longer true,
commence the computation of the product. (10 points)

b) Determine one way to accelerate the multiplication by taking advantage of special case values
of the inputs. Briefly describe how you would change your control to take advantage of the
special case you identified. (10 points)

