UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Professor Oldham

Fall 1999

EECS 40 — MIDTERM #1

29 September 1999

Name: _____

Last, First

Student ID: _____

TA: □ Kusuma □ Chang

Guidelines:

- 1. Closed book and notes except 1 page of formulas.
- **2.** You may use a calculator.
- **3.** Do not unstaple the exam.
- 4. Show all your work and reasoning on the exam in order to receive full or partial credit.
- 5. This exam contains 12 pages plus the cover page and 2 sheets of scratch paper included at the end of the exam. You can remove these from the rest of the exam if you wish.

Problem	Points Possible	Your Score
1	20	
2	15	
3	15	
4	20	
5	15	
6	15	
Total	100	

K	=	10 ³
m	=	10^{-3}
μ	=	10-6
n	=	10^{-9}
р	=	10^{-12}
f	=	10^{-15}

Problem 1 "Static Logic" (20 points)

Fill in the logic values in the table below for input values given. Note that the value for "C" is given as an example.

	Intermediate Values and Outputs for $A = 1, B = 0$						
	С	D	Е	F	G	Н	Ι
Value	1						

Fill in boxes \rightarrow (zero or 1)

Prob. 1 (cont.)

e) All logic blocks in the above figures have a unit gate delay of 10n sec.

Show the logic values versus time (for t = 0 to 70n sec) for outputs C and D of example a), given the logic input values (A and B) shown below:

Problem 2 "Circuit Solution by Inspection" (15 points)

Each of these problems should take no more than 1-2 minutes. WRITE ANSWER IN PLACE PRO-VIDED. There is no partial credit on these mini-problems.

Find V_{CD}

Find power dissipated in 500K resistor

P =	W
-----	---

Find V_X

Problem 3 "Initial Conditions" (15 points)

In each of the problems below, find the value of the current or voltage just after the switch moves $(t = 0^+)$. (What is requested is just a numerical value, NOT an equation or function of time.)

Problem 3 Worksheet

a. For the circuit below you are asked to write sufficient equations to find the unknowns. You <u>MUST</u> put the equations into the space indicated. Do any scratch work on the page opposite. Do not solve.

Unknowns: V_a, V_b, V_c

Write final equations here:

Problem 4 (cont.)

b. Similar to part a, you are asked to write sufficient equations to find the unknowns. Do not solve. <u>You must</u> put the equations in the space indicated below.

Unknowns: V_a, V_b, V_c

Put final form for equations here:

Problem 5 (15 points)

The following circuit is used to study one phase of the operation of a DRAM cell — the slow decay of a stored "1". First the switch S_1 is closed and kept closed to write a "1". Then it opens and the storage capacitor C_B is supposed to maintain the stored information. In this memory, a valid "1" is any voltage v_B in the range of 1 to 3V.

a) What is the value of v_B , just after the switch S_1 opens, i.e., at $t = 0^+$? (1% accuracy is sufficient.)

b) What is the value of v_B much later (e.g., 1 hour later)?

- c) On the axes provided on the facing page, <u>**neatly**</u> sketch the graph of $v_B(t)$ versus time. <u>You must label axes</u> <u>with units</u>.
- **d**) Write an equation for v_B as a function of time.

Problem 6 (15 points)

a) Find the Thévenin Equivalent Circuit of the following:

b) Find the Norton Equivalent of the following linear circuit:

c) Find the power supplied by the 12V voltage source in the following circuit.

Power out =	 W

Problem 6 Worksheet