University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences EECS 40 Midterm II

Name: \qquad Student ID \qquad

Guidelines

1. Closed book and notes; one $8.5 " \times 11 "$ page (both sides) of your own notes is allowed.
2. You may use a calculator.
3. Do not unstaple the exam.
4. Show all your work and reasoning on the exam in order to receive full or partial credit.

Score

Problem	Points Possible	Score
1	20	
2	20	
3	10	
Total	50	

1. Micromirror Structure [20 points]

Oxide2 Mask
(dark field)

Poly2 Mask
III

Process Sequence:

1. Starting material: phosphorus-doped silicon, concentration $5 \times 10^{16} \mathrm{~cm}^{-3}$
2. Deposit 200 nm of silicon nitride (see properties below)
3. Deposit 200 nm of n-type polysilicon and pattern using poly1 mask (clear field)
4. Deposit 400 nm of silicon dioxide and pattern using the oxide1 mask (clear field).
5. Deposit 250 nm of n-type polysilicon and pattern using the poly2 mask (clear field)
6. Spin photoresist, expose with the oxide 2 mask (dark field), develop, and etch 400 nm of oxide, strip photoresist.
7. Deposit 250 nm of gold and pattern using the metal mask (clear field)
8. Etch in hydrofluoric acid long enough to remove all remaining oxide; rinse, and dry.

Silicon nitride: $\varepsilon_{n}=7.5 \varepsilon_{0}$ where ε_{0} is the permittivity of air or vacuum
$\left(8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}\right)$. It is not etched in any of the processes used to etch oxide, polysilicon, or gold.
(a) [7 pts.] Sketch the cross section $\boldsymbol{A} \boldsymbol{-} \boldsymbol{A}^{\prime}$ on the graph below. Identify all layers clearly.

(b) $[7$ pts. $]$ Sketch the cross section $\boldsymbol{B}-\boldsymbol{B}^{\prime}$ on the graph below. Identify all layers clearly.

(c) [3 pts.] Find the numerical value of the capacitance between terminals 1 and 2 in femtoFarads (fF). Use the layout on p. 2 to estimate the area of the capacitor. Note that the substrate is grounded, so it has no contribution to the answer to this part. Hint: terminal 1 is connected to a poly 2 structure, whereas terminal 2 is connected to a poly1 structure. The capacitance is between the two polysilicon structures.
(d) [3 pts.] Find the numerical value of the capacitance between terminal 3 and the substrate. Neglect the contribution from the metal layer. Hint: you are not expected to consider capacitors in series to find the answer.
2. Integrated Circuit Resistor Structure [20 points]

Doping concentrations and thicknesses of regions \mathbf{a}, \mathbf{b}, and \mathbf{c} :
a $3 \times 10^{17} \mathrm{~cm}^{-3}$ boron, $2.5 \times 10^{17} \mathrm{~cm}^{-3}$ phosphorus ($0.5 \mu \mathrm{~m}$ thick)
b $10^{17} \mathrm{~cm}^{-3}$ boron, $2.5 \times 10^{17} \mathrm{~cm}^{-3}$ phosphorus ($1 \mu \mathrm{~m}$ thick)
c $10^{17} \mathrm{~cm}^{-3}$ boron (substrate)

Given

Electron mobility: $\mu_{n}=1000 \mathrm{~cm}^{2} /(\mathrm{Vs}) \quad$ Hole mobility: $\mu_{p}=400 \mathrm{~cm}^{2} /(\mathrm{Vs})$
Unit charge: $q=1.6 \times 10^{-19} \mathrm{C}$
(a) [2 pts.] What is the type (n or p) and the sheet resistance of layer \mathbf{a} in the IC structure whose layout and cross section is shown in the figure?
(b) [2 pts.] What is the type (n or p) and the sheet resistance of layer \mathbf{b} in the IC structure whose layout and cross section is shown in the figure?
(c) $\left[16\right.$ pts.] Fill in the table with the numerical value of the currents I_{0}, I_{1}, I_{2}, and I_{3} in $\mu \mathrm{A}$ for the two sets of voltages. If you couldn't solve parts (a) and (b), you can assume for this part that $R_{, \mathrm{a}}=250 \Omega /$ for layer a and $R_{, \mathrm{b}}=100 \Omega /$. Needless to say, these are not the correct answers to parts (a) and (b). Hint: some of the answers are zero.

(Volts)				(MicroAmps)			
V_{0}	V_{1}	V_{2}	V_{3}	I_{0}	I_{1}	I_{2}	I_{3}
0	2	1	0.5				
3	7	0.75	3.5				

3. Switched capacitor circuit [10 points]

(a) [3 pts.] Find the charge stored on each capacitor at the time $t=0.5 \mu \mathrm{~s}$, given that $C=50 \mathrm{fF}$ and $V_{i n}=1 \mathrm{~V}$. Hint: draw the circuit at that time, using the switch states given above.
(b) [3 pts.] Find the charge stored on each capacitor at the time $t=1.5 \mu \mathrm{~s}$, given that $C=50 \mathrm{fF}$ and $V_{i n}=1 \mathrm{~V}$. The same hint from part (a) applies.
(c) [4 pts.] Find the output voltage $V_{\text {out }}$ at the time $t=1.5 \mu \mathrm{~s}$, given that $C=50 \mathrm{fF}$ and $V_{i n}=1 \mathrm{~V}$. The same hint from part (a) applies.
