EE 40, Spring 1998
 Midterm 2
 Professor S. Schwarz, Professor R. M. White

Problem \#1 (25 Points)

The phasor representing the sinusoid $\mathrm{v}(\mathrm{t})$ is $\mathbf{v}=(1+2 \mathrm{j}) / 1-3 \mathrm{j})$. The angular frequency omega is $100 \mathrm{radians} / \mathrm{sec}$.
[8 pts.] a) Find the amplitude of the sinusoid.
[8 pts.$]$ b) Find the phase angle of the sinusoid.
[9 pts.] c) Find the first time after $\mathrm{t}=0$ at which v has its maximum value.

Problem \#2 (25 Points)

In the above circuit, $\mathbf{V}_{\mathbf{0}}=10 \mathrm{~V}$ (real, $\mathrm{C}=10^{\wedge}-8 \mathrm{~F}, \mathrm{~L}=2 \mathrm{X} 10^{\wedge}-4 \mathrm{H}, \mathrm{R}=100 \mathrm{ohms}$, omega $=10^{\wedge} 6 \mathrm{radians} / \mathrm{sec}$.
[5 pts.] a) Find the numerical value of the phasor $\mathbf{i}_{\mathbf{C}}$. Express answer in simplest rectangular form $A+j B$. [10 pts.] b) Find the numerical value of the phasor $\mathbf{i}_{\mathbf{L}}$. Express answer in simplest rectangular form $\mathrm{A}+\mathrm{jB}$. [10 pts.] c) Find the time-averaged power produced by the voltage source. (That is, find the power that comes out of the voltage source and goes into the rest of the circuit.)

Problem \#3 (25 Points)
For a certain circuit block, the ratio $\left|\mathbf{V}_{\mathbf{o u t}}\right| /\left|\mathbf{V}_{\text {in }}\right|$ is represented by the following:

The general expression for this transfer function is
$\left|\mathbf{V}_{\text {out }}\right|=(1+\text { A omega })^{\wedge} \mathbf{M}$
$\left|\mathbf{V}_{\text {in }}\right|(\mathrm{B}+\mathrm{C} \text { omega })^{\wedge} \mathrm{N}$
Find A,B,C,M and N. Note: 0 dB corresponds to $\left|\mathbf{V}_{\text {out }}\right| / / \mathbf{V}_{\text {in }} \mid=1$.

Problem \#4 (25 Points)

Find $\mathrm{V}_{\text {out }}$ in the above circuit. The diodes are to be represented by the large-signal diode model (including the 0.7 V drop across a forward-biased diode.) Make sure your answer is reasonable and consistent. Explain your reasoning.

