EE 40, Spring/1997 Midterm \#2 Professors T.-J. King and R.M White

Problem \#1 (18 points)

a. What is the phasor corresponding to $v_{s}(t)$? Express your answer in exponential and rectangular forms. [4 pts.]
b. What is the impedance seen by the voltage source? Express your answer in exponential and rectangular forms. [5 pts.]
c. What is the instantaneous current delivered by the voltage source? [4 pts.]
d. What is the time-averaged power supplied by the voltage source? [5 pts .]

Problem \#2 (20 points)

a. What is the transfer function $\mathbf{G}=\mathbf{v}_{\text {OUT }} / \mathbf{v}_{\text {IN }}$ at very low frequency, w approaching 0 ? [2 pts.]
b. What is the transfer function $\mathbf{G}=\mathbf{v}_{\mathrm{OUT}} / \mathbf{v}_{\text {IN }}$ at very high frequency, w approaching infinity? [2 pts.]
c. For what intermediate frequency w_{0} is \mathbf{G} real? [6 pts.]
d. What is $\mathbf{G}\left(w_{0}\right)$? [4 pts.]
e. Sketch the general behavior of $|\mathbf{G}(w)|$ vs. w on the axes provided. (y-axis from 0 to 1 , x -axis from 0 to $\left.10^{9}\right)$. Note: This is not a Bode plot. Indicate values of $\left|\mathbf{G}\left(0.5 w_{0}\right)\right|$ and $\left|\mathbf{G}\left(2 w_{0}\right)\right|$ on your plot. [6 pts.]

Problem \#3 (25 points)

all $t=0$.
a. What is the value of i_{c} at $t=0-?$ [2 pts.]
b. What is the value of v_{c} at $t=0-?$ [4 pts.]
c. What is the value of i_{c} at $t=0+$? [4 pts.]
d. Find an expression for v_{c}, for $t>0$. [5 pts.]
e. Sketch v_{c} for all t. (Label the axes on the plot.) [4 pts.]
f. Find an expression for i_{c}, for $t>0$. [3 pts.]
g. Sketch i_{c} for all t. (Label the axes on the plot.) [3 pts.]

Problem \#4 (20 points)

a. Identify all corner frequencies. [6 pts.]
b. How many poles and zeros are in the transfer function? [3 pts .]
c. Write an expression for the transfer function $\mathbf{G}(\mathrm{w})$, assuming that the magnitude is 20 dB at $w=0.1$ $\mathrm{rad} / \mathrm{sec}$. [4 pts.]
d. Neatly sketch the Bode magnitude plot (magnitude of $\mathbf{G}(w)$ in decibels vs. frequency on a logarithmic scale). Straight-line approximations are adequate. [7 pts.]

Problem \#5 (15 points)

a. Find the transfer function $\mathbf{v}_{\text {OUT }} / \mathbf{v}_{\text {IN }}$ for the op-amp circuit. You can assume that that the op-amp is ideal. [6 pts.]
b. Sketch the Bode magnitude plot of $\mathbf{v}_{\mathrm{OUT}} / \mathbf{v}_{\text {IN }}$. Straight-line approximations are adequate. [6 pts.]
c. If the op-amp were slightly "unbalanced" with an input offset voltage of 10 mV , what would be the value of the spurious output voltage? (Hint: The superposition theorem might be helpful here.)

Note: An op-amp with a voltage offset can be modelled as an offset-free op-amp plus an offset-voltage source: [3 pts.]

[^0]
[^0]: Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
 If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.

