UNIVERSITY OF CALIFORNIA
 College of Engineering Department of Electrical Engineering and Computer Sciences A.M. Flynn, R.T. Howe and R.M. White

Midterm 1: EECS 40/40I/41I

February 22, 1996

1. Closed book exam - no books, programmed calculators, etc. One $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of notes allowed.
2. Do your calculations on this exam. MAKE YOUR METHODS CLEAR TO THE GRADER.
3. Print and sign your name on this page and CHECK YOUR SECTION in the box above.
4. There are 4 problems. Make sure you have them all.
5. All exams are not identical.
6. Circuit analysis [25 points]

a) [7 pts] What is the numerical value of the current $i 2$ in the above circuit, for the case when $i s=1.5 \mathrm{~mA}$?

b) [8 pts] The 5 kOhms resistor is replaced with a non-linear circuit element having $i 2 \mathrm{vs} . v 2$ characteristics given in the graph below. What is the numerical value of the current $i 2$ for the case when is $=1.5 \mathrm{~mA}$? Hint: consider what this element is equivalent to over its linear range.

c) $[10 \mathrm{pts}]$ Plot the current $i l$, the current through the 10 kOhms resistor, as a function of the source current is for $i s=0$ to 5 mA on the graph provided below.

7. Power [25 points]

For each of the five circuit elements, check the correct statements regarding the sign and value of the power delivered to the element $(P=i v)$, which is consistent with the convention that positive power in an element corresponds to dissipation and a negative power corresponds to generation. If you check the "may be zero" box, give a brief justification for your answer. [5 pts per element]
3. Bridge circuit with multiple sources [25 points]

a) $[7 \mathrm{pts}]$ For $I=0$ in the above circuit, find the numerical value of the voltage $V B$ (with respect to ground)
b) [8 pts] For $I=0$, what is the power delivered to the circuit by the 3 V voltage source?
4. [25 points]
a) $[15 \mathrm{pts}]$ Find the Thevenin equivalent circuit, of the circuit below, seen looking into the terminals at left.

Vth $=$
$\mathrm{RT}=$
b) [10 pts] What is Vo as a function of V1 and V2? Use ideal op-amp assumptions. Find an expression for Vo, symbolically and then plug in values for the resistors:
$\mathrm{R} 1=5 \mathrm{KOhms}$
R2 $=10 \mathrm{KOhms}$
R3 $=60 \mathrm{KOhms}$
R4 $=60 \mathrm{KOhms}$

Vo =
$\mathrm{Vo}=$
c) $[10 \mathrm{pts}]$ For $I=100 \mathrm{uA}$, find the numerical value of the voltage VB. Hints: superposition is probably useful; your answer to part (a) may be helpful.

