EE 40/42/100, Spring 2007
 Prof. Chang-Hasnain
 Midterm \#2

April 11, 2007
Total Time Allotted: 80 minutes
Total Points: 100

1. This is a closed book exam. However, you are allowed to bring two page (8.5 " $\times 11^{\prime \prime}$), single-sided notes.
2. No electronic devices, i.e. calculators, cell phones, computers, etc.
3. SHOW all the steps on the exam.
4. Remember to put down units. Points will be taken off for answers without units.

Last (Family) Name: \qquad

First Name: \qquad

Student ID: \qquad Signature: \qquad
Circle the class you are in:

EE 40	EE 42	EE 100

Circle one discussion session you are in

	Monday		Tuesday		Wednesday		Thursday		Friday	
	Dis	TA								
	$100(42)-$						$40-$		$100-$	
10:00	101	Richard					105	Mike	107	Haibo
					$100(42)-$					
11:00	$40-101$	Mike	$100-105$	Haibo	102	Tanya				
13:00	$40-102$	Jia	$40-103$	Isaac	$100-104$	Tanya				
$15: 00$										

Problem 1 (22 pts)	
Problem 2 (10 pts):	
Problem 3 (15 pts)	
Problem 4 (18 pts)	
Problem 5 (35 pts):	
Total	

1. (22 pts) Assume the diode in the circuit below using the simple piecewise model with a threshold voltage of $\mathbf{0 . 6} \mathrm{V}$ (also known as the large signal model in the text book).

(i) (4 pts) Re-draw the circuit assuming the diode is off. Express V_{o} as a function of $V_{\text {in }}$.

Figure 1 pt

$$
\begin{aligned}
& \mathrm{Vin}=\mathrm{V} 1+2 \mathrm{~V} 1 \quad(1 \mathrm{pts}) \\
& \mathrm{V} 1=\mathrm{Vin} / 3 \quad(1 \mathrm{pts}) \\
& \mathrm{V} 0=2 \mathrm{~V} 1=2 \mathrm{Vin} / 3 \quad(1 \mathrm{pts})
\end{aligned}
$$

(ii) (4 pts) Re-draw the circuit assuming the diode is on. Express V_{o} as a function of $\mathrm{V}_{\text {in }}$.

Figure 1 pt
$\mathrm{V} 0=-0.6 \mathrm{~V} \quad(3 \mathrm{pts})$
(iii) (4 pts) For what values of $\mathrm{V}_{\text {in }}$ will the diode be on?

$$
\begin{equation*}
2 \mathrm{Vin} / 3 \leq-0.6 \mathrm{~V} \tag{2pts}
\end{equation*}
$$

Vin $\leq-0.9 \mathrm{~V}$
(2pts)
(iv) (4 pts) Plot V_{o} vs. $\mathrm{V}_{\text {in }}$.

$-0.9 \mathrm{~V},-0.6 \mathrm{~V}$,
positive side slope and shape (each 1 pts)
(v) (6 pts) Now suppose $\mathrm{V}_{\text {in }}=3 \sin (2 \pi \mathrm{t})$. Plot V_{o} versus time for $0<\mathrm{t}<2 \mathrm{~s}$. Label important voltages.

$$
\begin{aligned}
& V o=-0.6 V=2 \sin (2 \pi t) \\
& t=\frac{\sin ^{-1}(-0.3)}{2 \pi}
\end{aligned}
$$

$2 \mathrm{~V},-0.6 \mathrm{~V}$, clamping on reverse side each are 2 pts .

2 (10 pts) Consider the following circuit:

(i) (4 pts) Derive an expression relating Io to Vo.
$(8 \mathrm{~mA}-\mathrm{Io}) * 0.5 \mathrm{k}=\mathrm{Io}^{*} 1.5 \mathrm{k}+\mathrm{Vo}$
$4=2 \mathrm{k}^{*} \mathrm{Io}+\mathrm{Vo}$
(ii) (6 pts) Now assume the load has the following I-V characteristic. Draw a load line and find the values of lo and Vo.

$\mathrm{lo}=1 \mathrm{~mA}$
$\mathrm{Vo}=2 \mathrm{~V}$

UC BERKELEY
3. (15 pts)Op-amp circuit:

For the figure below:

Assume both are ideal op-amps:

1. Find i_{a}.
$\mathrm{ia}=3.3 \mathrm{~V} / 3.3 \mathrm{~K}=1 \mathrm{~mA}$
2. Find i_{o}.
io $=-(3.3 \mathrm{v}+4.7 \mathrm{~K} * 1 \mathrm{~mA}) / 32 \mathrm{~K}-\mathrm{i}=-1.25 \mathrm{~mA}$
3. Find V_{x}.
$V x=-0.25 m A *^{*} 20 K=-5 \mathrm{~V}$

UC BERKELEY
4. (18 pts) Consider the following circuit: Find the transfer function $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\text {in }}(\omega)$

There are many different ways to solve this problem. I think voltage divider and KCL are the simplest.

Voltage divider method:

$$
\frac{V o}{\operatorname{Vin}}=-\frac{R_{2} / / \frac{1}{j \varpi C}}{R_{1} / /(j \varpi L)+R_{2} / / \frac{1}{j \varpi C}}=-\frac{\frac{R_{2}}{1+j \varpi R_{2} C}}{\frac{j \varpi R_{1} L}{R_{1}+j \varpi L}+\frac{R_{2}}{1+j \varpi R_{2} C}}
$$

You DON'T have to simplify that to get full credit. However, in case you do simplify it, you should be able to get something similar to the following:

$$
\begin{aligned}
\frac{V o}{V i n} & =-\frac{\frac{R_{2}}{1+j \varpi R_{2} C}}{\frac{j \varpi R_{1} L^{*}\left(1+j \varpi R_{2} C\right)+R_{2} *\left(R_{1}+j \varpi L\right)}{\left(1+j \varpi R_{2} C\right) *\left(R_{1}+j \varpi L\right)}}=-\frac{R_{2} *\left(R_{1}+j \varpi L\right)}{j \varpi R_{1} L^{*}\left(1+j \varpi R_{2} C\right)+R_{2} *\left(R_{1}+j \varpi L\right)} \\
& =-\frac{R_{1} R_{2}+j \varpi R_{2} L}{R_{1} R_{2}-\varpi^{2} R_{1} R_{2} C L+j \varpi L\left(R_{1}+R_{2}\right)}
\end{aligned}
$$

KCL@ ground method:

UC BERKELEY
$\frac{V_{1}}{R_{1}}+\frac{V_{1}}{j \varpi L}+\frac{V o}{R_{2}}+V o j \varpi C=0 \quad$ where $\quad V_{1}=V o+V i n$
$\frac{V o+V i n}{R_{1}}+\frac{V o+V i n}{j \varpi L}+\frac{V o}{R_{2}}+V o j \varpi C=0$
$\frac{V o}{V i n}=-\frac{\frac{1}{R_{1}}+\frac{1}{j \varpi L}}{\frac{1}{R_{1}}+\frac{1}{j \varpi L}+\frac{1}{R_{2}}+j \varpi C}$

It can be further simplified to the result in voltage divider.
5. (35 pts) Consider the following transfer function of a circuit.

$$
H(f)=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{a}{1+j f / f_{B}} \quad \text { Let } \mathrm{a}=10, f_{B}=1 \mathrm{kHz} .
$$

(a) (5 pts) Write an expression for $|\mathrm{H}(\mathrm{f})|$ in dB .
$|\mathrm{H}(\mathrm{f})|=10 / \mathrm{sqrt}\left(1+\left(\mathrm{f} / \mathrm{f}_{\mathrm{B}}\right)^{2}\right)$
$20 \lg |\mathrm{H}(\mathrm{f})|=20-10 \lg \left(1+\left(\mathrm{f} / \mathrm{f}_{\mathrm{B}}\right)^{2}\right)$
(b) (4 pts) Evaluate (approximate) this expression for $f \ll f_{B}$. Find $|\mathrm{H}(\mathrm{f})|$ and the slope in the region.
$|\mathrm{H}(\mathrm{f})|=20 \log \mathrm{a}=20$
Slope: 0dB/decade
(c) (3 pts) Evaluate (approximate) this expression for $f \gg f_{B}$. What is the slope?

20-20log(f/ $\left.\mathrm{f}_{\mathrm{B}}\right)$
Slope: -20dB/decade
(d) (2 pts) Evaluate this expression for $f=f_{B}$ (What is $\left|H\left(f_{B}\right)\right|_{d B}$ exactly?). $20-10 \log 2$
(e) (5 pts) Write an expression for $\angle H(f)$.
$-\arctan \left(\mathrm{f} / \mathrm{f}_{\mathrm{B}}\right)$
(f) (3 pts) Evaluate this expression for $f \ll f_{B}$. Find $\angle H(f)$. 0°
(g) (3 pts) Evaluate this expression for $f \gg f_{B}$. Find $\angle H(f)$.
-90°
(h) (3 pts) Evaluate this expression for $f=f_{B}$. Find $\angle H\left(f_{B}\right)$.
(i) (2 pts) What type of filter is this?

Low pass filter
(j) (5 pts) Suppose the input signal is given by:
$v_{i n}(t)=5+10 \cos \left(10^{3} * 2 \pi * t\right)+10 \cos \left(10^{4} * 2 \pi * t-50^{\circ}\right)$
Find an expression for the output $v_{\text {out }}(t)$
(Hint: $\frac{1}{\sqrt{1.01}} \approx 0.995, \frac{1}{\sqrt{2}} \approx 0.7071, \frac{1}{\sqrt{101}} \approx 0.0995$,
$\arctan 0.1 \approx 5.71^{\circ}, \arctan 10 \approx 84.29^{\circ}$) These may not all be needed.

5	\rightarrow	50
$10 \cos \left(10^{3} * 2 \pi^{*} \mathrm{t}\right)$	\rightarrow	$100 * 0.7071 \cos \left(10^{3} * 2 \pi^{*} \mathrm{t}-45^{\circ}\right)$
$10 \cos \left(10^{4} * 2 \pi^{*} \mathrm{t}-50^{\circ}\right)$	\rightarrow	$100 * 0.0995 \cos \left(10^{*} * 2 \pi^{*} \mathrm{t}-50^{\circ}-84.29^{\circ}\right)$

$\operatorname{Vout}(\mathrm{t})=50+100 * 0.7071 \cos \left(10^{3} * 2 \pi^{*} \mathrm{t}-45^{\circ}\right)+100 * 0.0995 \cos \left(10^{4} * 2 \pi^{*} \mathrm{t}-50^{\circ}-84.29^{\circ}\right)$

