EECS 40, Spring 2007
 Prof. Chang-Hasnain Midterm \#1

February 21, 2007
Total Time Allotted: 80 minutes
Total Points: 100

1. This is a closed book exam. However, you are allowed to bring one page (8.5 " x $11 ")$, single-sided notes.
2. No electronic devices, i.e. calculators, cell phones, computers, etc.
3. SHOW all the steps on the exam. Answers without steps will be given only a small percentage of credits. Partial credits will be given if you have proper steps but no final answers.
4. Draw BOXES around your final answers.
5. Remember to put down units. Points will be taken off for answers without units.

Last (Family) Name:_ Perfect

First Name: \quad Peter

Student ID \qquad Discussion Session: \qquad

Signature: \qquad

Score:	
Problem 1 (26 pts)	
Problem 2 (28 pts):	
Problem 3 (32 pts)	
Problem 4 (14 pts)	
Total	

UC BERKELEY

1. (26 pts) Circuit Analysis

(a) (4 pts) Express i_{1} in terms of V_{1} and constants given in this problem.
$V_{1}=2 i_{1}$
(b) (4 pts) Express i_{2} in terms of $\mathrm{V}_{1} \underline{\text { AND }} \mathrm{V}_{2}$ and/or constants given in the problem.
$\mathrm{i}_{2}=3-\mathrm{V}_{1} / 2$
(c) (10 pts) Write two equations in V_{1} and V_{2} that can be used to solve the circuit (Hint: Use KCL or KVL.).

$$
\begin{aligned}
& 10+V_{1}-V_{2}=0 \\
& 2 x\left(3-V_{1} / 2\right)+8 \times\left(V_{1} / 2\right)-V_{2}=0
\end{aligned}
$$

(d) (8 pts) Solve for $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{i}_{1}$ and i_{2}.
$\mathrm{V}_{1}=2 \mathrm{~V}$
$\mathrm{V}_{1}=12 \mathrm{~V}$
$\mathrm{i}_{1}=1 \mathrm{~A}$
$\mathrm{i}_{2}=2 \mathrm{~A}$
2. (27 pts) First-Order Circuit. Remember to put down units.

a) (12 pts) At $\mathrm{t}=0$, the switch closes. Find the indicated current and voltages at $\mathrm{t}=0^{-} \mathrm{s}$, immediately BEFORE the switch closes. Note the current source has been active for a long time before the switch closes.

Provide the steps or explanation for your answers, e.g. using KCL/KVL, etc.

i_{1}	1 A
i_{2}	0 A
i_{3}	0 A
i_{4}	0 A
V_{1}	10 V
V_{2}	20 V

All capacitors are open circuits, all currents but i_{1} are $0 . \mathrm{i}_{1}$ is the same as the current source.
$V_{1}=\left(\frac{(10 \Omega+4 \Omega+6 \Omega) * 1 A}{2}\right)=10 \mathrm{Volts}$
$V_{1}=(10 \Omega+4 \Omega+6 \Omega) * 1 A=20$ Volts
b) (3 pts) At $\mathrm{t}=\mathrm{O}^{+} \mathrm{s}$, immediately AFTER the switch closes. Which quantities will be different?

All the currents may be different, so i_{1}, i_{2}, i_{3}, and i_{4} may change (in fact i_{1} does not). Voltages across capacitors cannot change instantaneously because this will result in infinite current flow.
c) (12 pts) Find the current and voltages after a very, very long time.

Provide the steps or explanation for your answers, e.g. using KCL/KVL, etc.

i_{1}	1.11 A
i_{2}	0 A
i_{3}	-0.11 A
i_{4}	0 A
v_{1}	11.11 V
v_{2}	25.56 V

3. (32 pts) Second-Order Circuit. Remember to put down units.

The switch is closed at $\mathrm{t}=0$. The goal is to find the voltage across the capacitor, $\mathrm{V}(\mathrm{t})$.
a.) (2 pts) For $\mathrm{t}<0$, assume that the switch was open and remained open for a very long time.

Find $V(0-)$.
$V(0-)=3 V$
b.) (4 pts) What is $V(0+)$? Explain.
$\mathrm{V}(0+)=3 \mathrm{~V}$.
Because voltage across capacitor can not change abruptly.
c.) (10 pts) Derive the second-order differential equation for the circuit. (Hint: Use KVL/KCL)

Using KVL:
$-3+R\left(i_{C}(t)+i_{L}(t)\right)+V(t)=0$
$-3+R\left(C \frac{d V(t)}{d t}+\frac{1}{L} \int_{0+}^{t} V\left(t^{\prime}\right) d t^{\prime}+i_{L}(0+)\right)+V(t)=0$
$R C \frac{d^{2} V(t)}{d t^{2}}+\frac{R}{L} V(t)+\frac{d V(t)}{d t}=0$
or using KCL:
$\frac{V(t)-3}{R}+i_{C}(t)+i_{L}(t)=0$
$\frac{V(t)-3}{R}+C \frac{d V(t)}{d t}+\frac{1}{L} \int_{0_{+}}^{t} V\left(t^{\prime}\right) d t^{\prime}+i_{L}(0+)=0$
$C \frac{d^{2} V(t)}{d t^{2}}+\frac{1}{L} V(t)+\frac{1}{R} \frac{d V(t)}{d t}=0$
In standard form:

$$
\begin{aligned}
& \frac{d^{2} V(t)}{d t^{2}}+\frac{1}{R C} \frac{d V(t)}{d t}+\frac{1}{L C} V(t)=0 \\
& \frac{d^{2} V(t)}{d t^{2}}+6 \frac{d V(t)}{d t}+9 V(t)=0
\end{aligned}
$$

UC BERKELEY
d.) (3 pts) What is α ? What is ω_{0} ? Is this critically damped, underdamped, or overdamped?
$\alpha=6 / 2=3 \mathrm{rad} / \mathrm{s}$
$\omega_{0}=\sqrt{9}=3 \mathrm{rad} / \mathrm{s}$
$\zeta=\frac{\alpha}{\omega_{0}}=1$
Critically damped.
e.) (3 pts) What is the particular solution?
$\mathrm{V}_{\mathrm{p}}(\mathrm{t})=0 \mathrm{~V}$ since after a long time, the inductor acts as a short circuit.
f.) (10 pts) Find the complementary (homogeneous) solution.
$v_{c}(t)=k_{1} e^{-3 t}+k_{2} t e^{-3 t}$
$v(t)=v_{p}(t)+v_{c}(t)=k_{1} e^{-3 t}+k_{2} t e^{-3 t}$
$\mathrm{v}(0)=3=\mathrm{k}_{1}$
$\mathrm{dv}(\mathrm{t}) / \mathrm{dt} \mathrm{t}_{\mathrm{t}=0}=0=-3 \mathrm{k}_{1}+\mathrm{k}_{2}=-9+\mathrm{k}_{2}$
$k_{2}=9$
$v_{c}(t)=3 e^{-3 t}+9 t e^{-3 t}$
4. (14 pts) Equivalent Circuit. Remember to put down units.

a.) (5 pts) What is $\mathrm{V}_{\text {in }}$?
$1500 \times 1000 /(1500+1000)=600 \Omega$
$\mathrm{V}_{\text {in }}=5 \times 600 /(600+400)=3 \mathrm{~V}$
b.) (4 pts) What is V_{ab} ?

$$
\begin{aligned}
V_{\mathrm{ab}} & =-g_{\mathrm{m}} \mathrm{~V}_{\text {in }} \times 5000 \mathrm{~V} \\
& =-g_{\mathrm{m}} \times 3 \times 5000 \mathrm{~V} \\
& =-g_{\mathrm{m}} \times 15000 \mathrm{~V}
\end{aligned}
$$

c.) (5 pts) What is the Thevenin equivalent circuit for terminals $a-b$? (Find $\mathrm{R}_{\mathrm{Th}}, \mathrm{V}_{\mathrm{Th}}$).

Answer in terms of g_{m}.
$\mathrm{V}_{\mathrm{Th}}=\mathrm{V}_{\mathrm{ab}}=-\mathrm{g}_{\mathrm{m}} \times 15000 \mathrm{~V}$
$R_{T h}=V_{T h} / I_{s c}=-g_{m} \times 15000 /\left(-g_{m} \times 3\right)=5000 \Omega$

