EECS 40, Spring 2006

 Prof. Chang-Hasnain

 Prof. Chang-Hasnain Midterm \#2

April 6, 2006
Total Time Allotted: 80 minutes
Total Points: 100

1. This is a closed book exam. However, you are allowed to bring two pages (8.5" x 11"), double-sided notes
2. No electronic devices, i.e. calculators, cell phones, computers, etc.
3. SHOW all the steps on the exam. Answers without steps will be given only a small percentage of credits. Partial credits will be given if you have proper steps but no final answers.
4. Draw BOXES around your final answers.
5. Remember to put down units. Points will be taken off for answers without units.
6. NOTE: $\mu=10^{-6} ; k=10^{3} ; M=10^{6}$

Last (Family) Name: \qquad

First Name: \qquad

Student ID: \qquad Lab Session: \qquad Dis. Session: \qquad

Signature: \qquad

Score:	
Problem 1 (20 pts)	
Problem 2 (35 pts):	
Problem 3 (15 pts):	
Problem 4 (30 pts):	
Total	

1.(20 pts) Match the transfer function to the Bode plot. Each transfer function matches to exactly one Bode plot. Also, there is no partial credit for this question.

a. ${ }^{\text {a }}$, 1	b.	$H(f)=\frac{1}{\left(\frac{\mathrm{jf}}{100}+1\right)^{2}}$	c.	$H(f)=\frac{1}{\frac{\mathrm{jf}}{1000}+1}$
$\left(\frac{\mathrm{jf}}{100}\right)^{2}+0.5\left(\frac{\mathrm{jf}}{100}\right)+1$				
d.	e.			
$H(f)=\frac{1}{\text { if }}$		$H(f)=\frac{1}{(. f)^{2}}$		
$\frac{\mathrm{jf}}{100}+1$		$\left(\frac{\mathrm{jf}}{100}\right)^{2}+1$		
Mark your answer here		Magnitude	(dB)	

Mark your answer here	Phase Plot (degrees)
e	
	$\begin{array}{llllll}10^{0} & 10^{1} & 10^{2} & 10^{3} & 10^{4} & 10^{5}\end{array}$
d	
a	
b	
	$\begin{array}{llllll}10^{0} & 10^{1} & 10^{2} & 10^{3} & 10^{4} & 10^{5}\end{array}$
C	
	10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} Frequency (Hz)

For the magnitude plot, we first split the list into first- and second-order Bode plots. The first order Bode plots have a -20 dB /decade slope, and the second-order Bode plots have a $40 \mathrm{~dB} /$ decade slope.

Looking at the breakpoints of the first-order Bode plots, we see that (c) has a breakpoint at $\mathrm{f}=$ 1000 Hz , and that (d) has a breakpoint at $\mathrm{f}=100 \mathrm{~Hz}$.

Looking at the size of the humps/peaks of the second-order Bode plots, decreasing values of zeta gives rise to a larger peak. (Note that technically speaking, (b) is two first-order terms but we can think of it as having a zeta $=1$).

From this, we have that the magnitude plots match as: (b), (e), (c), (a), (d).
For the phase plot, we again split the list into first- and second-order terms. For first-order terms, the phase plot is -45 degrees at the breakpoint. For second order terms, decreasing values of zeta gives rise to a sharper phase transition.
2. $(35 \mathrm{pts})$ The circuit schematic for a functional block known as a lead compensator is:

a (15 pts) Let $\mathrm{R}_{1}=10 /(2 \pi)$ ohms, $\mathrm{R}_{2}=100 /(2 \pi)$ ohms, $\mathrm{C}_{1}=100 \mathrm{uF}$, and $\mathrm{C}_{2}=100 \mathrm{uF}$. Show that the transfer function of the circuit shown above is:

$$
H(\mathrm{f})=\frac{\frac{\mathrm{jf}}{100}+1}{\frac{\mathrm{jf}}{1000}+1}
$$

Method 1: all at once

1) $V_{\text {in }}-I_{1}\left(R_{1}+\frac{1}{j \omega C_{1}}\right)=0$
2) $0 V-I_{1}\left(\frac{1}{j \omega C_{1}}\right)-I_{2}\left(\frac{1}{j \omega C_{2}}\right)=0 ; \quad I_{1}\left(\frac{1}{j \omega C_{1}}\right)=I_{2}\left(\frac{1}{j \omega C_{2}}\right) ; \quad I_{1}=I_{2}\left(\frac{j \omega C_{1}}{j \omega C_{2}}\right)=I_{2}\left(\frac{C_{1}}{C_{2}}\right)$
3) $0 V-I_{2}\left(R_{2}+\frac{1}{j \omega C_{2}}\right)=V_{\text {out }} ; \quad I_{2}=\frac{-V_{\text {out }}}{\left(R_{2}+\frac{1}{j \omega C_{2}}\right)}$

3+2) $I_{1}=\left(\frac{C_{1}}{C_{2}}\right) \frac{-V_{\text {out }}}{\left(R_{2}+\frac{1}{j \omega C_{2}}\right)}$
Combine with 1): $\quad V_{\text {in }}-\left[\left(\frac{C_{1}}{C_{2}}\right) \frac{-V_{\text {out }}}{\left(R_{2}+\frac{1}{j \omega C_{2}}\right)}\right]\left[\left(R_{1}+\frac{1}{j \omega C_{1}}\right)\right]=0$

$$
\begin{aligned}
& -\left(\frac{C_{2}}{C_{1}}\right) \frac{\left(R_{2}+\frac{1}{j \omega C_{2}}\right)}{\left(R_{1}+\frac{1}{j \omega C_{1}}\right)}=\frac{V_{\text {out }}}{V_{\text {in }}} ; \\
& \frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{\left(R_{2} C_{2}+\frac{1}{j \omega}\right)}{\left(R_{1} C_{1}+\frac{1}{j \omega}\right)}=-\frac{\left(j \omega R_{2} C_{2}+1\right)}{\left(j \omega R_{1} C_{1}+1\right)}=-\frac{\left(j 2 \pi f\left(\frac{100}{2 \pi} \Omega\right) 100 \mu F+1\right)}{\left(j 2 \pi f\left(\frac{10}{2 \pi} \Omega\right) 100 \mu F+1\right)}=\frac{\left(j\left(\frac{f}{100}\right)+1\right)}{\left(j\left(\frac{f}{1000}\right)+1\right)}
\end{aligned}
$$

Method 2: Two Inverters
$\frac{\text { Vout } 1}{\text { Vin } 1}=-\frac{\frac{1}{j \omega C_{1}}}{\frac{1}{j \omega C_{1}}+R_{1}}=-\frac{1}{1+j \omega R_{1} C_{1}}=-\frac{1}{1+j 2 \pi f\left(\frac{10}{2 \pi}\right)(100 \mu F)}=-\frac{1}{1+j \frac{f}{1000}}$
$\frac{\operatorname{Vout} 2}{\operatorname{Vin} 2}=-\frac{\frac{1}{j \omega C_{2}}+R_{2}}{\frac{1}{j \omega C_{2}}}=-\frac{1+j \omega R_{2} C_{2}}{1}=-\left[1+j 2 \pi f\left(\frac{100}{2 \pi}\right)(100 \mu F)\right]=-\left(1+j \frac{f}{100}\right)$
$\frac{\text { Vout }}{\text { Vin }}=-\frac{1}{1+j \frac{f}{1000}} \times-\left(1+j \frac{f}{100}\right)=\frac{j \frac{f}{100}+1}{j \frac{f}{1000}+1}$
Method 3: Solve in stages:
$\frac{\text { Vin }-0}{R_{1}+\frac{1}{j \omega C_{1}}}=\frac{0-\text { Vout } 1}{\frac{1}{j \omega C_{1}}} ; \frac{\text { Vout } 1}{\operatorname{Vin} 1}=-\frac{\frac{1}{j \omega C_{1}}}{R_{1}+\frac{1}{j \omega C_{1}}} .$. then same analysis as above
$\frac{\text { Vin } 2-0}{\frac{1}{j \omega C_{2}}}=\frac{0-\text { Vout } 2}{R_{2}+\frac{1}{j \omega C_{2}}} ; \frac{\text { Vout } 2}{\text { Vin } 2}=-\frac{R_{2}+\frac{1}{j \omega C_{2}}}{\frac{1}{j \omega C_{2}}}$.. then same analysis as above
$2 \mathrm{~b}(12 \mathrm{pts})$ In the following table, write the magnitude and phase values for $\mathrm{H}(\mathrm{f})$ for $\mathrm{f}=100 \mathrm{~Hz}$, $\mathrm{f}=1000 \mathrm{~Hz}$, very low f values $(f \rightarrow 0 \mathrm{~Hz})$ and very high f values $(f \rightarrow \infty \mathrm{~Hz})$. These answers only need to be within 1.5 times the correct answer (but only because of rounding errors or sketching inaccuracies that you might have. Do not use the "straight line" approximation if it will cause your answer will be off from the exact value by more than 1.5 times).

Note - terms in red should be f , not ω. Was announced during midterm

\mathbf{f} value (Hz)	$\mathbf{1 0} \log \|\mathbf{H}(\omega)\|^{\mathbf{2}}$	$\angle \mathbf{H}(\omega)$
Very low $\mathrm{f}(f \rightarrow 0 \mathrm{~Hz})$	3 dB	39.7 deg
$\mathrm{f}=100 \mathrm{~Hz}$	17 dB	39.7 deg
$\mathrm{f}=1000 \mathrm{~Hz}$	0 dB	0 deg
Very high $\mathrm{f}(f \rightarrow \infty \mathrm{~Hz})$	20 dB	0 deg

Given terms:
$\tan ^{-1}(0.1)=5.7 \mathrm{deg}$
$\tan ^{-1}(0.5)=26.6 \mathrm{deg}$
$\tan ^{-1}(1)=45$ deg
$\tan ^{-1}(2)=63.4 \mathrm{deg}$
$\tan ^{-1}(10)=84.3 \mathrm{deg}$
Magnitude: $10 \log |H(f)|^{2}=10 \log \left[\frac{\left(1+\frac{f^{2}}{10^{4}}\right)}{\left(1+\frac{f^{2}}{10^{6}}\right)}\right]=10 \log \left[\left(1+\frac{f^{2}}{10^{4}}\right)\right]-10 \log \left[\left(1+\frac{f^{2}}{10^{6}}\right)\right]$
Phase: $\tan ^{-1}\left(\frac{f}{100}\right)-\tan ^{-1}\left(\frac{f}{1000}\right)$
For $\mathrm{f}=100 \mathrm{~Hz}$, becomes $3 \mathrm{~dB}-0 \mathrm{~dB}=3 \mathrm{~dB}$
For $\mathrm{f}=1000 \mathrm{~Hz}$, becomes $20 \mathrm{~dB}-3 \mathrm{~dB}=17 \mathrm{~dB}$
Low f becomes $0 \mathrm{~dB}-0 \mathrm{~dB}$
High f becomes $10 \log \left[\frac{\left(\frac{f^{2}}{10^{4}}\right)}{\left(\frac{f^{2}}{10^{6}}\right)}\right]=10 \log [100]=20 d B$
For $\mathrm{f}=100 \mathrm{~Hz}$, becomes $\tan ^{-1}(1)-\tan ^{-1}(.1)=45^{\circ}-5.7^{\circ}=39.3^{\circ}$
For $\mathrm{f}=1000 \mathrm{~Hz}$, becomes $\tan ^{-1}(10)-\tan ^{-1}(1)=84.3^{\circ}-45^{\circ}=39.3^{\circ}$
For $\mathrm{f}->0$, becomes $\tan ^{-1}(0)-\tan ^{-1}(0)=0^{\circ}$
For $\mathrm{f}->$ infinity, becomes $\tan ^{-1}(\infty)-\tan ^{-1}(\infty)=90^{\circ}-90^{\circ}=0^{\circ}$

2c (8 pts) Sketch the Bode plot of this transfer function. Sketch BOTH the magnitude and phase plot. Make sure to label the slopes of segments, the two break points of the transfer function, the low frequency magnitude, the high frequency magnitude, and the highest value on the phase plot. Be as accurate as you can, i.e., do not use the "straight line" approximation except as a starting guide if you wish for plotting the actual transfer function.

3. (15 pts) Find the unknown values in the circuits below. For the diodes, use the " 0.8 V ONOFF" model:

If I _ $d<0$, then the diode is open or OFF
If $I_{-} d=0$, then the diode is open or OFF
If I_d $>=0$, then the diode is a 0.8 V source or ON
If I_d >0, then the diode is a 0.8 V source or ON
a. (5 pts) Find I_a in the circuit below:

0 V diode is off, 5 V diode and $\mathrm{I} _$a diode are on.
$I_{-} \mathrm{a}=\frac{5 V-0.8 V}{100 \Omega}=42 \mathrm{~mA}$
b. (5 pts) Find $\mathrm{I}_{-} \mathrm{b}$ in the circuit below:

1) $10 \mathrm{~V}-\mathrm{I} _1(100 \mathrm{ohm})=0$;

I_1=100mA (I_1 is current in left branch)
2) $10 \mathrm{~V}-\mathrm{I} _2(100 \mathrm{ohm})-0.8 \mathrm{~V}=0$

I_2 $=92 \mathrm{~mA}$ (I_2) is current in right branch with diode)
So I_b=I_1+I_2=192mA
c. $(5 \mathrm{pts})$ Let $\mathrm{R} _1=10$ ohms and $\mathrm{R} _2=100$ ohms. Find V_c in the circuit below, in terms of V_1 and V_2:

1) $\mathrm{V} 2-\mathrm{I} 2(\mathrm{R} 1)-\mathrm{I} 2(\mathrm{R} 2)=0$
2) $\mathrm{V} 2-\mathrm{I} 2(\mathrm{R} 1+\mathrm{R} 2)=0$
3) $\frac{V_{2}}{R_{1}+R_{2}}=I_{2}$
4) $\mathrm{V} 1-\mathrm{I} 1(\mathrm{R} 1)-\mathrm{I} 1(\mathrm{R} 2)=\mathrm{Vc}$
5) $\mathrm{V} 1-\mathrm{I} 1(\mathrm{R} 1+\mathrm{R} 2)=\mathrm{Vc}$
6) $\frac{V_{1}-V_{C}}{R_{1}+R_{2}}=I_{1}$
7) $\mathrm{Vc}+\mathrm{I} 1(\mathrm{R} 2)=\mathrm{I} 2(\mathrm{R} 2) \quad$ (on far right opamp both voltages same)

$$
\begin{aligned}
& 3+2+1) \quad \mathrm{Vc}+\frac{V_{1}-V_{C}}{R_{1}+R_{2}} \mathrm{R} 2=\frac{V_{2}}{R_{1}+R_{2}} \mathrm{R} 2 \\
& V_{c}\left(1-\frac{R_{2}}{R_{1}+R_{2}}\right)=-\frac{R_{2} V_{1}}{R_{1}+R_{2}}+\frac{R_{2} V_{2}}{R_{1}+R_{2}} ; V_{c}\left(\frac{R_{1}}{R_{1}+R_{2}}\right)=\frac{R_{2}}{R_{1}+R_{2}}\left(V_{2}-V_{1}\right) ; V_{c}=\frac{R_{2}}{R_{1}}\left(V_{2}-V_{1}\right)
\end{aligned}
$$

4. (30 pts) Consider the circuit shown below, in which the RC time constant is very long compared to the period T of the input $\mathrm{V}_{\mathrm{IN}}(\mathrm{t})$. Use the Ideal Diode model:

If $\mathrm{V}_{\mathrm{D}}<0$, then the diode is OFF and does not pass current $\left(\mathrm{I}_{\mathrm{D}}=0\right)$
If $\mathrm{I}_{\mathrm{D}}>=0$, then the diode is ON and $\mathrm{V}_{\mathrm{D}}=0$
V_{D} is the voltage drop across the diode and I_{D} is current through the diode. $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {OUT }}$ in this problem. Analyze the following circuit. Given $\mathrm{V}_{\mathrm{IN}}(\mathrm{t})=V_{m} \sin (2 \pi t / T)$ for $\mathrm{t}>0$, and $\mathrm{V}_{\mathrm{C}}\left(\mathrm{t}=0^{-}\right)=0$.

(a) (8 pts) Sketch $\mathrm{V}_{\mathrm{C}}(\mathrm{t})$? Label all key values.

The capacitor is initially able to charge up, since V_out starts at 0 V and so the diode is a short. However, the capacitor is not able to discharge through the diode since the diode is an open when reverse biased. Thus, the capacitor discharges through the resistor. Since the RC constant is large, we have either:

Or:

(b) (8 pts) Sketch $\mathrm{V}_{\text {OUT }}(\mathrm{t})$? Label all key values.

Simple application of KVL gives that V_out = V_in $-V_{-} c$. The respective sketches of V_out are:

Or:

Note the concavity of the curves above.
(c) (8 pts) Explain what is happening for different time duration.

The capacitor is initially able to charge up, since V_out starts at 0 V and so the diode allows current flow in the positive direction. However, the capacitor is not able to discharge through the diode since the diode is an open when reverse biased. Thus, the capacitor discharges through the resistor. Since the RC time constant is large, the capacitor will discharge very slowly (in the limit it will not discharge at all). When V_C matches V_in, then V_out is 0 V and so the diode will again allow the capacitor to charge up. We repeat this process.
(d) (6 pts) Sketch $\mathrm{I}_{\mathrm{D}}(\mathrm{t})$? Label all key values.

Or:

