1. Resistive Circuits and Capacitors
a. This is most easily solved by using the current divider rule:
$\mathrm{I}_{7}=\mathrm{I}_{\mathrm{s}} / 8$
b. If we treat the two resistances R in parallel as a $1 / 2 R$ ohm resistor, we can use the voltage divider rule:
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{s}} * 1 / 2 /(1 / 2+1) * \mathrm{~V}_{\mathrm{s}}=1 / 3 \mathrm{~V}_{\mathrm{s}}$
c. At the node of interest, we have 2 I current coming in from the right, and I current leaving from the bottom, so we know that there must be I current leaving through the top. Thus, by Ohm's law, we know that $\mathrm{V}_{1}=10+\mathrm{I} * 5$. Furthermore, we also know by Ohm's law that $\mathrm{V}_{1}=10 \mathrm{I}$. Using these two equations, we can find that $\mathrm{V}_{1}=20$ Volts.

Another way to solve this problem is to use KCL at the V_{1} node:
$\frac{V_{1}-10}{5}+\frac{V_{1}}{10}-\frac{2 V_{1}}{10}=0$
$2 V_{1}-20+V_{1}-2 V_{1}=0$
$V_{1}=20 \mathrm{Volts}$
d. We know that for two capacitors in series, the charges are equal, and for two capacitors in parallel, the voltages are equal. If we treat the pair of 2 C capacitors in parallel as a single 4C capacitor. Then we have the following equivalent circuit:

We know that $\mathrm{Q}_{\mathrm{C}}=\mathrm{Q}_{4 \mathrm{C}}$, and $\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{4 \mathrm{C}}=\mathrm{V}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{C}}=\mathrm{C} * \mathrm{~V}_{\mathrm{C}}$, and $\mathrm{Q}_{4 \mathrm{C}}=4 \mathrm{C} * \mathrm{~V}_{4 \mathrm{C}}$.
From $\mathrm{Q}_{\mathrm{C}}=\mathrm{C} * \mathrm{~V}_{\mathrm{C}}, \mathrm{Q}_{4 \mathrm{C}}=4 \mathrm{C} * \mathrm{~V}_{4 \mathrm{C}}$, and $\mathrm{Q}_{\mathrm{C}}=\mathrm{Q}_{4 \mathrm{C}}$, we know that $\mathrm{V}_{\mathrm{C}}=4 \mathrm{~V}_{4 \mathrm{C}}$
Thus $4 \mathrm{~V}_{4 \mathrm{C}}+\mathrm{V}_{4 \mathrm{C}}=\mathrm{V}_{\mathrm{S}}$, so $\mathrm{V}_{4 \mathrm{C}}=1 / 5 * \mathrm{~V}_{\mathrm{S}}$, and $\mathrm{V}_{\mathrm{C}}=4 / 5 * \mathrm{~V}_{\mathrm{S}}$
$\mathrm{Q}_{\mathrm{C}}=\mathrm{Q}_{4 \mathrm{C}}=4 \mathrm{C} / 5 * \mathrm{~V}_{\mathrm{S}}$
2. One solution is to use the trick from homework 4.

For $0<\mathrm{t}<2 \mathrm{sec}$, we have the following circuit:

First we note that $i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=0$, and $i_{L}(\infty)=20 / 10=2 \mathrm{Amps}$
Next, we find the Thevenin resistance that the inductor sees, which is trivially 10 Ohms. This gives us the time constant $\mathrm{L} / \mathrm{R}=20 / 10=2$ seconds

Now that we know the initial current (0 Amps), the steady state voltage (2 Amps), and the time constant (2 seconds), we use the shortcut from Homework 4 and get:
$I_{L}(t)=I_{f}-\left(I_{f}-I_{i}\right) e^{-t / \tau}$
$=2-2 e^{-t / 2 \mathrm{sec}} \mathrm{Amps}$
For $\mathrm{t}>2 \mathrm{sec}$, we have the following circuit:

First we note that $\mathrm{i}_{\mathrm{L}}\left(2^{-}\right)=\mathrm{i}_{\mathrm{L}}\left(2^{+}\right)=2-2 e^{-2 / 2}=2-2 e^{-1}=1.26 \mathrm{Amps}$
To find $i_{L}(\infty)$, we can use superposition. From the 20 volt source, $i_{L}(\infty)$ is increased by 2 Amps . From the 10 volt source, $i_{L}(\infty)$ is decreased by 1 amp . Thus, $\mathrm{i}_{\mathrm{L}}(\infty)=2-1=1 \mathrm{Amp}$.

Next, we find the Thevenin resistance that the inductor sees by zeroing out the independent sources, yielding the following circuit:

This is just a 10 ohm resistor in parallel with another 10 ohm resistor, which means that the resistance the inductor sees is 5 ohms.

Thus our time constant is $20 / 5=4$ seconds.

So, again using the trick from homework 4, we have
$I_{L}(t)=I_{f}-\left(I_{f}-I_{i}\right) e^{-(t-2) / \tau}$
$=1-(1-1.26) e^{-(t-2) / 4}$
$=1+0.26 e^{-(t-2 \mathrm{sec}) / 4 \mathrm{sec}} A m p s$

Another possible solution is to write the differential equations in both cases and solve.

For the first case, we can use KVL to find that:
$10-10 I_{L}-20 I_{L}^{\prime}=0$
$2-I_{L}-2 I_{L}^{\prime}=0$
$I_{L}+2 I_{L}^{\prime}=2$

We first find the complementary solution $I_{C}(t)=K e^{-t / \tau}$. Since we have our equation in the form $I_{L}+\tau I_{L}^{\prime}=f(t)$, we know that $I_{C}(t)=K e^{-t / 2 \mathrm{sec}} \mathrm{Amps}$.

Next we can find the particular solution by guessing that our solution is of the form $I_{P}(t)=A^{*} f(t)+B^{*} f^{\prime}(t)=A$. Plugging this into our differential equation above, we get that $\mathrm{A}+0=2$, or $\mathrm{A}=2$.

Finally, we know that $\mathrm{I}(0)=0$, so we find $\mathrm{I}(0)=I_{C}(0)+I_{P}(0)=K+2=0$, or $\mathrm{K}=-2$. Thus, our final solution for $0<\mathrm{t}<2$ is $I(t)=2-2 e^{-t / 2 \mathrm{sec}}$ Amps.

For the second part of the problem, we write a new differential equation using KCL at our node of interest. (We could also write two KVL equations and add them).

Doing this, we obtain:
$\frac{V_{L}-20}{10}+\frac{V_{L}+10}{10}+\int \frac{V_{L}}{20}=0$
$V_{L}=L I_{L}^{\prime}$
$\frac{20 I_{L}^{\prime}-20}{10}+\frac{20 I_{L}^{\prime}+10}{10}+\frac{20 I_{L}}{20}=0$
$2 I_{L}^{\prime}-2+2 I_{L}^{\prime}+1+I_{L}=0$
$4 I_{L}^{\prime}-1+I_{L}=0$
$4 I_{L}^{\prime}+I_{L}=1$

Since our equation is in the form $I_{L}+\tau I_{L}^{\prime}=f(t)$, we know that our complementary solution is of the form $I_{L_{C}}(t)=K e^{-(t-2 \mathrm{sec}) / 4 \mathrm{sec}} \mathrm{Amps}$.

Next we find the particular solution. As above, we assume that $I_{L_{P}}(t)=A$, and plug this into our differential equation, finding that $\mathrm{A}=1$.

Now we add our particular and complementary solution and have that $I_{L}=K e^{-(t-2) / 4}+1$. To find K , we know that $I_{L}(2)=2-2 e^{-1}=1.26 \mathrm{~A}$, so $I_{L}(2)=K e^{-(2-2) / 4}+1=K+1=1.26 A$, and therefore $\mathrm{K}=0.26 \mathrm{~A}$.

Thus our final solution is $I_{L}(t)=1+0.26 e^{-(t-2 \mathrm{sec}) / 4 \mathrm{sec}} \mathrm{Amps}$
There are many more possible solutions, such as using separation of variables, etc,
3.
a. For $\mathrm{t}<0$, the circuit has been closed for a long time, and since we have a DC source, we can perform DC steady state analysis. We treat the capacitor as an open circuit, and the inductor like a short. Thus, we find that $I_{L}=5 / 500,000=10^{-5} \mathrm{Amps}$, and since the inductor acts like a short, $V_{C}=0$ Volts.
b. One method is to write KCL at the node, take the derivative of both sides, and reorganize the terms, as shown below:

$$
\begin{aligned}
& \frac{V_{L}-\cos (t)}{R}+C V_{L}^{\prime}+\int \frac{V_{L}}{L}=0 \\
& \frac{V_{L}^{\prime}+\sin (t)}{R}+C V_{L}^{\prime \prime}+\frac{V_{L}}{L}=0 \\
& \frac{V_{L}^{\prime}}{R C}+V_{L}^{\prime \prime}+\frac{V_{L}}{L C}=-\frac{\sin (t)}{R C} \\
& V_{L}^{\prime \prime}+2 V_{L}^{\prime}+V_{L}=-2 \sin (t)
\end{aligned}
$$

c. Since, our equation is in the form

$$
\begin{aligned}
& \frac{d^{2} x(t)}{d t^{2}}+2 \alpha \frac{d x(t)}{d t}+\omega_{0}^{2} x(t)=f(t) \\
& \alpha=1, \omega_{0}=1, \zeta=\frac{\alpha}{\omega_{0}}=\frac{1}{1}=1
\end{aligned}
$$

Therefore, the complementary/transient solution is:

$$
V_{C}(t)=K_{1} e^{-\alpha t}+K_{2} t e^{-\alpha t} \text { Volts }
$$

d. Critically damped
e. We assume a solution of the form $V_{p}(t)=A \cos (t)+B \sin (t)$

$$
\begin{aligned}
& V_{p}(t)=A \cos (t)+B \sin (t) \\
& V_{P}^{\prime}(t)=-A \sin (t)+B \cos (t) \\
& V_{P}^{\prime \prime}(t)=-A \cos (t)-B \sin (t)
\end{aligned}
$$

Then we plug them into our equation from part b , and get:

$$
-A \cos (t)-B \sin (t)-2 A \sin (t)+2 B \cos (t)+A \cos (t)+B \sin (t)=-2 \sin (t)
$$

By collecting sine and cosine terms, we find the following:

$$
\begin{aligned}
& -A+2 B+A=0 \\
& -B-2 A+B=-2
\end{aligned}
$$

From the first equation we find that $\mathrm{B}=0$.
Plugging $\mathrm{B}=0$ into the second equation, we get $-2 \mathrm{~A}=-2$, or $\mathrm{A}=1$.
Thus our particular solution $V_{p}(t)=\cos (t)$
f. We obtain the complete solution by adding the particular solution and the complementary solution, so we have:

$$
V(t)=K_{1} e^{-t}+K_{2} t e^{-t}+\cos (t)
$$

To find the constants, we can first use the initial condition $v(0)=0$, and obtain:

$$
\begin{aligned}
& V(0)=K_{1} e^{0}+K_{2} 0 e^{0}+\cos (0)=0 \\
& K_{1}+1=0 \\
& K_{1}=-1
\end{aligned}
$$

To find K_{2}, we know that $\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=10^{-5} \mathrm{Amps}$. However, to use this information directly, we'd need an equation for $\mathrm{I}_{\mathrm{L}}(\mathrm{t})$.

Instead, it's easier to find $\mathrm{i}_{C}\left(0^{+}\right)$. Note: $i_{C}\left(0^{+}\right) \neq i_{C}\left(0^{-}\right)!$! At time 0^{+}, we can write KCL at node V_{L}, which gives us:
$\frac{V_{L}\left(0^{+}\right)-\cos (0)}{500000}+I_{C}\left(0^{+}\right)+I_{L}\left(0^{+}\right)=0$
We also know the following facts:
$V_{L}\left(0^{+}\right)=V_{C}\left(0^{+}\right)=V_{C}\left(0^{-}\right)=0$
$I_{L}\left(0^{+}\right)=I_{L}\left(0^{-}\right)=10^{-5} \mathrm{Amps}$
So our above KCL equation becomes:
$\frac{-10^{-5}}{5}+I_{C}\left(0^{+}\right)+10^{-5}$ Amps $=0$
This gives us:
$I_{C}\left(0^{+}\right)=-4 / 5 * 10^{-5} \mathrm{amps}$
Next, we find $I_{C}(t)=C V_{C}{ }^{\prime}(t)=10^{-6}\left(e^{-t}+K_{2} e^{-t}-K_{2} t e^{-t}-\sin (t)\right)$, and thus :
$I_{C}(0)=10^{-6}\left(1+K_{2}\right)=-4 / 5^{*} 10^{-5}$
$\left(1+K_{2}\right)=-40 / 5$
$\left(1+K_{2}\right)=-8$
$K_{2}=-9$
Thus, we have our final solution:

$$
V_{L}(t)=-e^{-t / \mathrm{sec}}-9 t e^{-t / \mathrm{sec}}+\cos (t) \text { Volts }
$$

