EECS 40, Spring 2006 Prof. Chang-Hasnain Midterm #1

March 2, 2006 Total Time Allotted: 80 minutes Total Points: 100

- 1. This is a closed book exam. However, you are allowed to bring one page (8.5" x 11"), double-sided notes
- 2. No electronic devices, i.e. calculators, cell phones, computers, etc.
- 3. SHOW all the steps on the exam. Answers without steps will be given only a small percentage of credit. Partial credit will be given if you have proper steps but no final answers.
- 4. Draw BOXES around your final answers.
- 5. **Remember to put down units.** Points will be taken off for answers without units.
- 6. NOTE: $\mu = 10^{-6}$; $k = 10^{3}$; $M = 10^{6}$.

Last (Family) Name: ______
First Name: ______
Student ID: _____
Signature: _____

Score:	
Problem 1 (20 pts)	
Problem 2 (30 pts)	
Problem 3 (50 pts)	
Total:	

Problem 1 (20 pts): Resistive Circuits and Capacitors

(a) (5 pts) Find I_7 in terms of I_s

(b) (5 pts) Find V_1 in terms of V_{s}

(c) (5 pts) Find Node Voltage V1.

(d) (5 pts) What is the charge and voltage across each capacitor in terms of $V_{\rm s}$ and C?

Problem 2 (30 pts): Transient Analysis: 1st order circuit There are two switches in this circuit and the closing sequence is below: At t<0, both switches are open. The initial condition is $i_L = 0$, $V_L = 0$ At t=0, the left switch is closed. During the period 0<t<2 s, the left switch is closed and the right is open.

At t=2 s, the right switch is closed (now both closed). For t>2 s, both switches are closed.

(a) (10 pts) 0<t<2 s, what is $i_L(t)$? Hint: $e^{-1} = .37$.

(b) (20 pts): t>2 s, what is i_L(t)?

Problem 3 (50 pts): For the circuit below:

(a) (5 pts) What are v_L and i_L for t < 0? (Remember units!)

(b) (10 pts) Use KVL/ KCL to show that the differential equation for $v_L(t)$ for t>0 is the following equation. Write enough steps to show you know the material.

 v_L " + $2v_L$ ' + v_L = - 2sin(t)

(c) (15 pts) Find the transient solution. What are α , ω_0 , and ξ ?

Problem 3 continued:

(d) (5 pts) Is this critically damped, underdamped, or overdamped?

(e) (10 pts) What is the particular solution?

(f) (5 pts) What is the complete solution?