EECS 40, Spring 2006
 Prof. Chang-Hasnain
 Midterm \#1

March 2, 2006
Total Time Allotted: 80 minutes
Total Points: 100

1. This is a closed book exam. However, you are allowed to bring one page ($8.5^{\prime \prime} \times 11^{\prime \prime}$), double-sided notes
2. No electronic devices, i.e. calculators, cell phones, computers, etc.
3. SHOW all the steps on the exam. Answers without steps will be given only a small percentage of credit. Partial credit will be given if you have proper steps but no final answers.
4. Draw BOXES around your final answers.
5. Remember to put down units. Points will be taken off for answers without units.
6. NOTE: $\mu=10^{-6} ; \mathbf{k}=10^{3} ; \mathbf{M}=10^{6}$.

Last (Family) Name: \qquad
First Name: \qquad
Student ID: \qquad
Signature: \qquad

Score:	
Problem 1 (20 pts)	
Problem 2 (30 pts)	
Problem 3 (50 pts)	
Total:	

Problem 1 (20 pts): Resistive Circuits and Capacitors
(a) (5 pts) Find I_{7} in terms of I_{S}

(b) (5 pts) Find V_{1} in terms of V_{s}

(c) (5 pts) Find Node Voltage V1.

(d) (5 pts) What is the charge and voltage across each capacitor in terms of V_{s} and C ?

Problem 2 (30 pts): Transient Analysis: $1^{\text {st }}$ order circuit
There are two switches in this circuit and the closing sequence is below:
At $t<0$, both switches are open. The initial condition is $i_{L}=0, V_{L}=0$
At $t=0$, the left switch is closed. During the period $0<t<2 \mathrm{~s}$, the left switch is closed and the right is open.
At $t=2 \mathrm{~s}$, the right switch is closed (now both closed). For $\mathrm{t}>2 \mathrm{~s}$, both switches are closed.

(a) (10 pts) $0<t<2 \mathrm{~s}$, what is $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$? Hint: $\mathrm{e}^{-1}=.37$.
(b) (20 pts): $\mathrm{t}>2 \mathrm{~s}$, what is $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$?

Problem 3 (50 pts): For the circuit below:

(a) (5 pts) What are v_{L} and i_{L} for $\mathrm{t}<0$? (Remember units!)
(b) (10 pts) Use KVL/ KCL to show that the differential equation for $\mathrm{v}_{\mathrm{L}}(\mathrm{t})$ for $\mathrm{t}>0$ is the following equation. Write enough steps to show you know the material.
$v_{L}{ }^{\prime \prime}+2 v_{L}{ }^{\prime}+v_{L}=-2 \sin (t)$
(c) (15 pts) Find the transient solution. What are α, ω_{0}, and ξ ?

Problem 3 continued:
(d) (5 pts) Is this critically damped, underdamped, or overdamped?
(e) (10 pts) What is the particular solution?
(f) (5 pts) What is the complete solution?

