Name \qquad Solutions \qquad

EE40

Midterm 3
April 24, 2003

PLEASE WRITE YOUR NAME ON EACH ATTACHED PAGE PLEASE SHOW YOUR WORK TO RECEIVE PARTIAL CREDIT PLEASE DO NOT LEAVE UNTIL EXAM PERIOD IS OVER

Problem 1: 15 Points Possible \qquad
Problem 2: 20 Points Possible \qquad
Problem 3: 15 Points Possible \qquad
Problem 4: 20 Points Possible \qquad
Problem 5: 20 Points Possible \qquad
Problem 6: 10 Points Possible \qquad

TOTAL: 100 Points Possible \qquad
\qquad Solutions \qquad

Problem 1: 15 Points Possible
Determine whether the circuit below performs a logical operation. If it does, give the Boolean function it computes. If not, give a set of inputs that results in an invalid output.

For your convenience, 8 copies of this circuit are given on the next page. Assume that all PMOS transistors have source terminal on top, and all NMOS transistors have source terminal on the bottom.

From looking at Pmos half: $F=V_{D 0}$ if B conducts $O R$ (A conducts $A N O C$ conducts)

$$
F=\bar{B}+\bar{A} \bar{C}
$$

From looking at Nos half: $F=0$ if B conducts ANID (A conducts or C conducts)

$$
\bar{F}=B(A+C)
$$

These agree by De Morgan's law; it is a logic circus,
\qquad Solutions \qquad

Problem 1 Workspace

Problem 1 workspace Do switches for each $A B C$ combo
$A B C$

011

$$
F=\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A \bar{B} C
$$

(Equivalent to previous results.).

Name \qquad Solutions \qquad

Problem 2: 20 Points Possible
For the CMOS logic circuit below, determine the most probable mode of operation for each transistor. Assume that ε is a very small positive number, and $V_{D D}$ is much larger in magnitude than either $\mathrm{V}_{T H}$.

$$
\begin{aligned}
& \text { DOS }{ }_{2} \text { cutoff }\left(V_{G S P_{2}}=V_{D D}-V_{D D}=O V\right) \\
& \text { PMOS, barely on }\left(V_{G S} P_{1}=V_{D D}+V_{\text {HHS }}-\varepsilon-V_{D D}=V_{\text {TAP }}-\varepsilon\right)
\end{aligned}
$$

ID shored by Pos, AMOs, NmOS_{2} is small
$V_{G S N_{2}}=V_{D D}+V_{T H P}-\varepsilon$ for NMOS_{2} is not small and
is positive, since $V_{D D}$ is much larger in magnitude
than $V_{T H P}$ or ε (by assumption).
NaOS $_{2}$ fully on with small $I_{D}=\mathrm{NmOS}_{2}$ triode
NmOS_{2} therefore also has small $V_{D S N_{2}}$)
so $V_{G S_{N 1}}=V_{D D}-V_{D S_{N 2}}$, the gate-source voltage for $N N_{1}$,
is not small. NMOS, folly on, small $I_{D} \Rightarrow$ NMOS, triode
NMIDS, therefore has small $V_{D S_{N}}$.

$$
V_{D D}=\underbrace{V_{D N_{1}}}_{\text {small }}+\underbrace{V_{D S_{N_{2}}}}_{\text {small }}-V_{D S_{1}}
$$

$\Rightarrow V_{D S p}$ negative with large magnitude

large magnitude \Rightarrow DMOS, saturation

Name \qquad Solutions \qquad

Problem 3: 15 Points Possible

Consider the inverter at right, which turns on an LED when the output voltage is high.

I have put a resistor in series with the LED to limit the current so the LED doesn't burn.

But, the LED needs a current of at least 20 mA to light up.

I want the LED to light up for an input voltage as high as 0.8 V .

Will the LED light up for an input of 0.8 V ?
$\mathrm{W} / \mathrm{L} \mu \mathrm{C}_{\mathrm{Ox}}=100 \mathrm{~mA} / \mathrm{V}^{2}$ for both transistors,

$\mathrm{V}_{\mathrm{TH}(\mathrm{N})}=-\mathrm{V}_{\mathrm{TH}(\mathrm{P})}=1 \mathrm{~V}$,
$\lambda=0 \mathrm{~V}^{-1}$ for both transistors,
$\mathrm{V}_{\mathrm{F}}=2 \mathrm{~V}$ for the LED (use large-signal model).

$$
\text { Nos cutoff }\left(v_{G S N}=v_{i N}=0.8 \mathrm{~V}\right) \Rightarrow I_{D_{N}}=0 A
$$

Pmos triode (will show Pmos sat, is wrong)
(1)

$$
B_{y} K V L, \quad V_{D S P}^{(2)}=V_{\text {OUT }}-V_{D D}=V_{\text {OUT }}-5
$$

$$
B_{y} \mathrm{CCL}, \frac{I_{D}}{D_{P}}=-\frac{V_{\text {OUT }}-V_{F}}{100}=-\frac{V_{\text {OUT }}-2 V}{100}
$$

Put (3) and (2) into (1) and solve for vout:

$$
\begin{aligned}
& V_{\text {out }}=\left\{-1.51 V, 4.91 V V_{3}\right. \\
&\left\{\begin{array}{l}
\text { impossible! }
\end{array}\right)
\end{aligned}
$$

$$
V_{D S P}=-0.09 \mathrm{~V} \text { oK for triode mode. }
$$

$$
I_{\text {diode }}=\frac{V_{\text {out }}-2 \mathrm{~V}}{100 \Omega}=29.1 \mathrm{~mA} \text { LED } \text { Lights up 1 }
$$

If guessed saturation for DMOS,

$$
I_{D_{p}}=-1 / 2 \cdot 100 \mathrm{~mA}(0.8 \mathrm{~V}-5 \mathrm{~V}--1 \mathrm{~V})^{2}
$$

$$
=-512 \mathrm{~mA}
$$

$$
V_{D S P}=V_{\text {OUt }}-V_{D D}=-100 T_{D_{p}}+2 V-5 V
$$

$$
=48.2 \mathrm{~V} \text { whoa } \text { e. }
$$

\qquad Solutions \qquad

Problem 4:20 Points Possible
Consider the CMOS inverter at right, with
W/L $\mu C_{o x}=1 \mathrm{~mA} / \mathrm{V}^{2}$ for both transistors, $\mathrm{V}_{\mathrm{TH}(\mathrm{N})}=-\mathrm{V}_{\mathrm{TH}(\mathrm{P})}=1 \mathrm{~V}$,
$\lambda=0.01 \mathrm{~V}^{-1}$ for both transistors.
For this inverter, $\mathrm{V}_{\mathrm{M}}=2.5 \mathrm{~V}$.

a) Find $\mathrm{V}_{\text {OUT }}$ for $\mathrm{V}_{\mathbb{I N}}=2.502 \mathrm{~V}$. Hint for guessing modes: Notice that $\mathrm{V}_{\mathbb{I N}}$ is close to V_{M}.
b) Find the slope of the $\mathrm{V}_{\text {OUT }} \mathrm{vs}$. $\mathrm{V}_{\mathbb{I N}}$ curve in this region, given by

$$
\frac{\Delta \text { Vout }}{\Delta \mathrm{V}_{\mathrm{IN}}}=\frac{\text { Vout }(\text { for } \mathrm{V} \text { IN }=2.502 \mathrm{~V})-\mathrm{VM}_{\mathrm{M}}}{2.502 \mathrm{~V}-\mathrm{VM}_{\mathrm{M}}}
$$

Since we have unloaded inverter with $V_{\text {in }}$ doge to V_{M}, assume "region C " with both transistors in saturation.

$$
\begin{aligned}
& I_{D N}=1 / 2 \cdot 1 \mathrm{~mA} / \mathrm{V}^{2}(2.502 \mathrm{~V}-1 \mathrm{~V})^{2}(1+0.01 \mathrm{VDSN}) \\
& I_{D P}=-1 / 2 \cdot 1 \mathrm{~mA} / \mathrm{N}^{2}(2.502 \mathrm{~V}-5 \mathrm{~V}-1 \mathrm{~V})^{2}(1-0.01 \mathrm{VDSP} \\
& K V L_{:}: V_{D S P}=V_{D S N}-V_{D D}=V_{D S N}-5 \mathrm{~V} \\
& R C L: I_{D P}+I_{D N}=0 \Rightarrow I_{O N}=-I_{D_{P}}
\end{aligned}
$$

Solve the above to get $V_{O S_{N}}=N_{\text {OUI }}=2.23 \mathrm{~V}$

$$
\frac{\Delta v_{\text {out }}}{\Delta V_{1 N}}=\frac{2.23 V-2.5 V}{2.502 V-2.5 \mathrm{~V}}=-135
$$

Name \qquad Solutions \qquad

Problem 5: 20 Points Possible
Find the propagation delay for this 3-input NAND gate with inverter load,

where the 3-input NAND is implemented using two 2-input NAND gates and an inverter:

Compute the propagation delay t_{p} for the 3 -input NAND as the sum of the worstcase propagation delays of the individual gates inside.

Use $R_{N}=1 \mathrm{k} \Omega, R_{P}=2 \mathrm{k} \Omega$, and $\mathrm{C}_{\mathrm{G}}=10 \mathrm{fF}$ per transistor. Ignore interconnect capacitance.

\qquad Solutions \qquad

Problem 6: 10 Points Possible
Design a circuit, using only NMOS and PMOS transistors (and a power supply), that performs the 3-input NAND function with shorter worse-case propagation delay than the implementation given in Problem 5, when a single inverter is attached as the output load.

Assume that your transistors have the same characteristics as those I Problem 5.
Use $R_{N}=1 \mathrm{k} \Omega, R_{P}=2 \mathrm{k} \Omega$, and $C_{G}=10 \mathrm{fF}$ per transistor. Ignore interconnect capacitance.

Provide your design and its worst-case propagation delay with single inverter output load.

Popular solution:

Worst-case resistant:
$3 R_{N}$ (poll-down)
If attached to inverter,

$$
C_{\text {Out }}=2 C_{G}
$$

$$
\begin{aligned}
t_{p} & =0.69\left(3 R_{N}\right)\left(2 C_{q}\right) \\
& =41.4 p \mathrm{~s}
\end{aligned}
$$

(half the delay of the Problem 5 analysis)

Name \qquad Solutions \qquad

Fun Corner

It's picture time again! If you finish early, please don't get up and disturb students in your row. Instead, show off your artistic/comedic ability here.

