Department of Electrical Engineering and Computer Sciences College of Engineering University of California, Berkeley

SR Sanders

Spring 2002

EECS40 - Midterm #1 Feb. 26, 2002

Name: <u>Solutions</u>		SID#	
Last,	First		
Signature:		TA:	

Guidelines

- 1. Closed book, except 2 sheets of your own notes.
- 2. You may use a calculator.
- 3. Do not unstaple the exam.
- 4. Show all your work and reasoning on the exam to receive full or partial credit.
- 5. The exam has 4 problems.

Problem	Points possible	Your score
1	20	
2	20	
3	30	
4	30	
total		

1. Consider the Boolean expression:

$$F = (X + \overline{Y}) (Y + Z)$$

(10) a) Write a truth table for this expression.

Χ	Y	Ζ	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(10) b) Express F in sum of products form. Do not simplify.

$\mathbf{F} = \mathbf{\overline{X}\overline{Y}Z} + \mathbf{\overline{X}\overline{Y}Z} + \mathbf{\overline{X}\overline{Y}Z} + \mathbf{\overline{X}\overline{Y}Z} + \mathbf{\overline{X}\overline{Y}Z}$

(10) c) Draw a realization for your expression in (b) using NAND logic.

The circuit shown here is at equilibrium with $v_c = 0$ at t = 0. At t = 0, switch A is moved as shown in the diagram. Then at time $t = 10 \mu S$, switch B is closed. For time $0 \le t < 10 \mu S$, determine the circuit time constant. (6) a)

(6) c) For time t > 10 μ S, determine the circuit time constant.

(6) d) Determine an expression for the capacitor voltage $v_c(t)$ for $t > 10 \mu$ S.

(6) e) Graph v_c (t) for t > 0 on the axes below.

