Department of Electrical Engineering and Computer Sciences
 College of Engineering
 University of California, Berkeley

SR Sanders
Spring 2002
EECS40 - Midterm \#1
Feb. 26, 2002

Name: \qquad
Last, First

Signature: \qquad

SID\# \qquad

TA:

Guidelines

1. Closed book, except 2 sheets of your own notes.
2. You may use a calculator.
3. Do not unstaple the exam.
4. Show all your work and reasoning on the exam to receive full or partial credit.
5. The exam has 4 problems.

Problem	Points possible	Your score
1	20	
2	20	
3	30	
4	30	
total		

1. Consider the Boolean expression:

$$
\mathrm{F}=(\mathrm{X}+\overline{\mathrm{Y}})(\mathrm{Y}+\mathrm{Z})
$$

(10) a) Write a truth table for this expression.

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{F}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

(10) b) Express F in sum of products form. Do not simplify.
(10) c) Draw a realization for your expression in (b) using NAND logic.
4.

The circuit shown here is at equilibrium with $\mathrm{v}_{\mathrm{c}}=0$ at $\mathrm{t}=0$. At $\mathrm{t}=0$, switch A is moved as shown in the diagram. Then at time $t=10 \mu \mathrm{~S}$, switch B is closed.
(6) a) For time $0<t<10 \mu \mathrm{~S}$, determine the circuit time constant.
(6) b) Determine an expression for the capacitor voltage for time $0<t<10 \mu \mathrm{~S}$.
(6) c) For time $\mathrm{t}>10 \mu \mathrm{~S}$, determine the circuit time constant.
(6) d) Determine an expression for the capacitor voltage $\mathrm{v}_{\mathrm{c}}(\mathrm{t})$ for $\mathrm{t}>10 \mu \mathrm{~S}$.
(6) e) Graph $v_{c}(t)$ for $t>0$ on the axes below.

