EECS 40 Midterm 1 - Spring 2001 Professor Howe

1. Capacitor Charging/Discharging [17 points]

(a) [4 pts] What is the value of the current $\mathrm{i}\left(\mathrm{t}=0^{+}\right)$in Amperes? The switch moves up at $\mathrm{t}=0$ and down at $\mathrm{t}=50 \mathrm{ps}$. (note that $1 \mathrm{ps}=10^{-12} \mathrm{~s}$).
(b) [4 pts] What is the charge q on the + plate of the 1 pF capacitor in pC at $\mathrm{t}=50 \mathrm{ps}$?
(c) [4 pts] What is the value of the current $\mathrm{i}\left(\mathrm{t}=50^{+} \mathrm{ps}\right)$ in Amperes? If you couldn't solve part (b), you can assume for this part that $\mathrm{q}(\mathrm{t}=50 \mathrm{ps})=5 \mathrm{pC}$. Needless to say, this is not the correct answer to part (b).
(d) [5 pts] Accurately sketch the waveform $\mathrm{vc}(\mathrm{t})$ for $0<\mathrm{t}<100 \mathrm{ps}$ on the graph below. The values at $\mathrm{t}=0$ and 50 ps should be accurate. You can make the same assumption in part (c) if you were unable to solve part (b).

2. Ladder circuit [16 points]

(a) [5 pts] Find the numerical value of the current I_{1}.
(b) [4 pts] Find the numerical value of the current I_{2}. If you couldn't answer part (a), you can assume for this part that $I_{1}=2 \mathrm{~mA}$. Needless to say, this is not the correct answer to (a).
(c) $[3 \mathrm{pts}]$ Find the numerical value of the current I_{3}. In case you couldn't solve part (a), you can
make the same assumption as you made on part (b).
(d) [4 pts] What is the total power absorbed by all the resistors in milliWatts?

3. Linear Circuit Analysis [17 points]

(a) [4pts] For this part, nodes A, C and D are connected to node B, which is selected as the reference node. Redraw the circuit with the reference node at the bottom.
(b) [4 pts] For the connections in part (a), find the numerical value of the current i_{1} in microamps.
(c) [4 pts] We completely change the connections for this part: a 5 k -ohm resistor is connected between nodes A and B, nodes A and D are connected, nodes B and C are connected, and node E is selected as the reference node. Redraw the circuit with the reference node at the bottom.
(d) [5 pts] Solve for the numerical value of the voltage V_{A} in Volts.

