EE40 Midterm 2 Solutions

Spring 2000

Problem \#1: Circuits with Dependent Sources [20 points]

a) Find V_{0}. [4 pts $]$

Current divider formula: $\mathrm{i}_{\mathrm{x}}=(10 \mathrm{kohm} /(10 \mathrm{kohm}+40 \mathrm{kohm})) * 5 \mathrm{~mA}=1 \mathrm{~mA}$
$\mathrm{V}_{0}=\left(-10 \mathrm{i}_{\mathrm{x}}\right)(10 \mathrm{kohm})=(-10 * 1 \mathrm{~mA})(10 \mathrm{kohm})=-100 \mathrm{~V}$
b) In the circuit below, the independent source values and resistance are known. Use the nodal analysis technique to write $\mathbf{3}$ equations sufficient to solve for $\mathbf{V a}, \mathbf{V b}$, and $\mathbf{V c}$. To receive credit, you must write your answer in the box below.
[$\mathbf{6}$ pts] DO NOT SOLVE THE EQUATIONS!

Write the nodal equations here: Note that the only unknowns in these equations are $\mathrm{Va}, \mathrm{Vb}, \mathrm{Vc}$
node $\mathrm{a}: \mathrm{I}_{\mathrm{AA}}+\mathrm{V}_{\mathrm{a}} / \mathrm{R}_{1}+\left(\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right) / \mathrm{R}_{2}=0$
supernode: $\left(\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}\right) / \mathrm{R}_{2}+\left(\mathrm{V}_{\mathrm{b}}+\mathrm{V}_{\mathrm{AA}}\right) / \mathrm{R}_{3}+\mathrm{V}_{\mathrm{c}} / \mathrm{R}_{4}=0$
relationship due to dependent source: $\mathrm{V}_{\mathrm{c}}-\mathrm{V}_{\mathrm{b}}=10 \mathrm{~V}_{\mathrm{a}} / \mathrm{R}_{1}$
c) Consider the following circuit:

i) Find the voltage $V_{a b}$ [$\mathbf{5} \mathbf{p t s}$]
$\mathrm{i}_{1}=\mathrm{V}_{\mathrm{x}} / 7 \mathrm{kohm}$
Applying KCL to node $\mathrm{x}: 70-\mathrm{V}_{\mathrm{x}} / 3 \mathrm{kohm}=\mathrm{i}_{1}+20 \mathrm{i}_{1}=21 \mathrm{i}_{1}=21 \mathrm{~V}_{\mathrm{x}} / 7 \mathrm{kohm}$ $70-\mathrm{V}_{\mathrm{x}}=9 \mathrm{~V}_{\mathrm{x}}=>\mathrm{V}_{\mathrm{x}}=7$
$\mathrm{i}_{1}=7 \mathrm{~V} / 7 \mathrm{kohm}=1 \mathrm{~mA} ; \mathrm{i}_{\mathrm{a}}=0 \Rightarrow \mathrm{~V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{y}}=20 \mathrm{i}_{1}(3 \mathrm{kohm})=60 \mathrm{~V}$
ii) What is the current i_{a} when the terminals \mathbf{a} and \mathbf{b} are shorted together? [$\mathbf{3} \mathbf{~ p t s}$]

Current divider formula:
$\mathrm{i}_{\mathrm{a}}=(3 \mathrm{kohm} /(3 \mathrm{kohm}+1 \mathrm{kohm}))(-20 \mathrm{~mA})=-15 \mathrm{~mA}$
iii) Draw the Thevenin Equivalent Circuit. [2 pts]

$\mathrm{V}_{\text {th }}=\mathrm{V}_{\mathrm{oc}}=\mathrm{V}_{\mathrm{ab}}$ from part (i)
Rth $=-\mathrm{V}_{\mathrm{oc}} / \mathrm{I}_{\mathrm{sc}}=\mathrm{V}_{\mathrm{ab}}$ from part (i)/i i_{a} from part (ii) $=60 \mathrm{~V} /-15 \mathrm{~mA}=4 \mathrm{kohm}$
Problem \#2: Transient Response [30 points]
a) In the circuit below, the switch has been in the closed position for a long time.

i) Find the value of V_{R} just after the switch opens $(t=0+)$. [$\left.\mathbf{3} \mathbf{~ p t s}\right]$

Before the switch is opened, the voltage across the inductor is zero $\left(\mathrm{V}_{\mathrm{L}}=\mathrm{Ldi} / \mathrm{dt}=0\right)$, i.e. the 1 kohm resistor is shorted out by the inductor. The current flowing through the inductor $\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=5 \mathrm{~V} / 5 \mathrm{kohm}=1 \mathrm{~mA}$.
$\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=1 \mathrm{~mA}$, since inductor current cannot change instantaneously.
$\mathrm{V}_{\mathrm{R}}\left(0^{+}\right)=-\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)(1 \mathrm{kohm})=(-1 \mathrm{~mA})(1 \mathrm{kohm})=-1 \mathrm{~V}$
ii) How much energy is dissipated in the 1 kohm resistor after the switch is opened? [$\mathbf{2} \mathbf{~ p t s}$]

All of the energy which was stored in the inductor at $\mathrm{t}=0$ is dissipated in the 1 kohm resistor after the switch is closed.
$\mathrm{E}=0.5 \mathrm{~L}[\mathrm{i}(0)]^{2}=0.5(10-6 \mathrm{H})(10-3 \mathrm{~A})^{2}=0.5 * 10-12 \mathrm{~J}=0.5 \mathrm{pJ}$
b) In the circuit below, the 5 microF capacitor is initially charged to $5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{C} 1}\left(0^{-}\right)=5 \mathrm{~V}\right)$. (The 1 microF capacitor is initially uncharged.) The switch is then closed at time $t=0$. What is the final value of $\mathrm{V}_{\mathrm{C} 1}$? [5 pts]

Conservation of charge:
$\mathrm{Q}_{\text {final }}+\mathrm{Q}_{2 \text { final }}=\mathrm{Q}_{\text {1initial }}$
$(5$ microF $)\left(\mathrm{V}_{\mathrm{C} 1 \text { final }}\right)+(1$ microF $)\left(\mathrm{V}_{\mathrm{C} 2 \text { final }}\right)=(5$ microF $)\left(\mathrm{V}_{\mathrm{C} \text { linitial }}\right)$
In the final state $(t=0)$, the voltages across the capacitors are equal, i.e. $\mathrm{V}_{\mathrm{C} 1 \text { final }}=\mathrm{V}_{\mathrm{C} \text { 2final }}$ $(6$ microF $)\left(\mathrm{V}_{\mathrm{C} 1 \text { final }}\right)=(5$ microF $)(5 \mathrm{~V})$
$\mathrm{V}_{\text {Clfinal }}=(5 / 6)(5 \mathrm{~V})=4.17 \mathrm{~V} \sim 4.2 \mathrm{~V}$
c) The following is a circuit model for an NMOS inverter, in which the transistor is turned on at time $t=0$:

$$
\begin{aligned}
& \text { NMOS is off } \\
& \text { for } t<0 \\
& \Rightarrow i_{\text {NMOS }}=0 \\
& \text { for } t \leq 0-
\end{aligned}
$$

i) What is the value of V_{C} at $t=0-?[\mathbf{~ p t s}]$

In steady state (before the switch closes), $\mathrm{i}_{\mathrm{c}}=0 ; \mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
ii) What is the value of $\mathrm{i}_{\text {NMOS }}$ at $t=0+[\mathbf{~ p t s}]$
$\mathrm{V}_{\mathrm{c}}\left(0^{+}\right)=\mathrm{Vc}(0-)$, since capacitor voltage cannot change instantaneously. $\mathrm{i}_{\mathrm{NMOS}}\left(0^{+}\right)=\mathrm{V}_{\mathrm{c}}\left(0^{+}\right) / \mathrm{R}_{\text {NMOS }}=5 \mathrm{~V} / 10 \mathrm{kohm}=0.5 \mathrm{~mA}$
iii) What is the final value of V_{c} ? [$\mathbf{3} \mathbf{p t s}$]

In steady state, $\mathrm{i}_{\mathrm{c}}=0$. Therefore, we have a simple voltage divider:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{c}}(\text { inifinity }) & =\left[\mathrm{R}_{\text {NMOS }} /\left(\mathrm{R}_{\text {NMOS }}+\mathrm{R}_{\text {load }}\right] * \mathrm{~V}_{\mathrm{DD}}\right. \\
& =(10 /(10+90))(5 \mathrm{~V})=0.5 \mathrm{~V}
\end{aligned}
$$

iv) Neatly sketch the graph of $\mathrm{i}_{\text {NMOS }}$ for all t , labeling the axes. [$\mathbf{5} \mathbf{~ p t s]}$

v) Write an equation for $\mathrm{i}_{\mathrm{NMOS}}$ as a function of time, for $\mathrm{t}>0$. [$\mathbf{6} \mathbf{~ p t s]}$
$\mathrm{i}_{\text {NMOS }}=\mathrm{i}_{\text {NMOSfinal }}+\left[\mathrm{i}_{\text {NMOS }}\left(0^{+}\right)-\mathrm{i}_{\text {NMOSfinal }}\right]{ }^{-(\mathrm{t} / \text { ReqC })}$
R_{eq} is equivalent resistance seen by the capacitor: $\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{\text {load }} \| \mathrm{R}_{\mathrm{NMOS}}$
$\mathrm{R}_{\mathrm{eq}}=(90)(10) /(90+10)=9 \mathrm{kohm} ; \mathrm{R}_{\mathrm{eq}} \mathrm{C}=(9 \mathrm{kohm})(10 \mathrm{nF})=9 * 10-5 \mathrm{~s}$
Equation: $0.05+0.45 \mathrm{e}-\left(\mathrm{t} /\right.$ Q $\left.^{*} 10^{\wedge}-5\right) \mathrm{mA}$

Problem \#3: Op-Amp Circuits [25 points]

Assume the op-amps in this problem are ideal.

a) Consider the following circuit:

Apply KCL at $(-)$ node:

i) Find an expression for V_{0} as a function of V_{a}. [6 pts]

This is a difference amplifier circuit (which you've studied in the lab) with $\mathrm{R}_{\mathrm{a}} / \mathrm{R}_{\mathrm{b}}=\mathrm{R}_{\mathrm{C}} / \mathrm{R}_{\mathrm{d}}=1 / 2$
$\mathrm{V}_{0}=\left(\mathrm{R}_{\mathrm{b}} / \mathrm{R}_{\mathrm{a}}\left(6-\mathrm{V}_{\mathrm{a}}\right)=2\left(6-\mathrm{V}_{\mathrm{a}}\right)=12-2 \mathrm{~V}_{\mathrm{a}}\right.$
ii) Find V_{0} for $V_{a}=2 V$. [$\mathbf{3} \mathbf{~ p t s}$]
$\mathrm{V}_{0}=12-2(2)=8 \mathrm{~V}$
iii) For what values of V_{a} will the op-amp be saturated? [$\mathbf{6} \mathbf{~ p t s}$]
$\mathrm{V}_{0}=12-2 \mathrm{~V}_{\mathrm{a}}=>\mathrm{V}_{\mathrm{a}}=\left(12-\mathrm{V}_{0}\right) / 2$
V_{0} saturates at $15 \mathrm{~V}: \mathrm{V}_{\mathrm{a}}<=(12-15) / 2=-3 / 2 \mathrm{~V}$
V_{0} saturates at -15 V : $\mathrm{V}_{\mathrm{a}}>=(12-(-15)) / 2=27 / 2 \mathrm{~V}$
Values of V_{a} for which the op-amp will be saturated: $\mathrm{V}_{\mathrm{a}}<=-1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{a}}>=13.5 \mathrm{~V}$
b) In the following circuit, the $\mathrm{op}=\mathrm{amps}$ are operating linearly.

Find $\mathrm{V}_{\text {out }}$ in terms of $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}[\mathbf{1 0} \mathbf{~ p t s}]$ (Hint: The superposition method might be helpful here.)
Find the individual contributions of each voltage source:
i) Set V_{2} to 0 V : $\mathrm{V}_{\mathrm{x}}=0$, so the circuit simplifies to a simple inverting amplifier

ii) Set V_{1} to 0 V : circuit simplifies to simple non-inverting amplifier

Add the contributions of each source together:

$$
V_{\text {out }}=V_{\text {out }}{ }^{\prime}+V_{\text {out }}=-\left(R_{2} / R_{1}\right)\left(V_{1}\right)-\left(R_{4} / R_{3}\right)\left(1+\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)\right)\left(\mathrm{V}_{2}\right)
$$

Problem \#4: Semiconductor properties; p-n diodes [25 points]

a) Consider a silicon sample maintained at 300 K under equilibrium conditions, uniformly doped with $1 * 1016$ cm^{-3} phosphorus atoms. The surface region of the sample is additionally doped uniformly with $5^{*} 1016 \mathrm{~cm}^{-3}$ boron atoms, to a depth of 1 microm, as shown in the figure below.

Schematic cross-sectional view of silicon sample

i) In the figure above, indicate the type of regions (I and II) by labelling them as " n " or " p " type. [2 pts]
ii) What are the electron and hole concentrations in Region I? [5 pts]
$\mathrm{N}_{\mathrm{A}}>\mathrm{N}_{\mathrm{D}}$, and $\mathrm{N}_{\mathrm{A}} \gg \mathrm{n}_{\mathrm{i}}$ so $\mathrm{p}=\mathrm{N}_{\mathrm{A}}-\mathrm{N}_{\mathrm{D}}=5 * 1016-1 * 1016=4 * 1016$
$\mathrm{pn}=\mathrm{n}_{\mathrm{i}}{ }^{2} \Rightarrow \mathrm{n}=\mathrm{n}_{\mathrm{i}}{ }^{2} / \mathrm{p}=\left(1.45^{*} 1016\right) 2 / 4 * 1016=5256$
$\mathrm{n}=5256 \mathrm{~cm}^{-3} ; \mathrm{p}=4 * 1016 \mathrm{~cm}^{-3}$
iii) What is the sheet resistance of Region I? [$\mathbf{5} \mathbf{~ p t s]}$
rho $=1 /\left(\mathrm{qmu}_{\mathrm{n}} \mathrm{n}+\mathrm{qmu}_{\mathrm{p}} \mathrm{p}\right) \sim 1 / \mathrm{qu}_{\mathrm{p}} \mathrm{p}$
$>$ From plot on Page 2, $\mathrm{mu}_{\mathrm{p}} \sim 350 \mathrm{~cm}{ }^{2} / \mathrm{Vs}$ for $\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{D}}=6 * 1016 \mathrm{~cm}^{-3}$
$\mathrm{R}_{\mathrm{s}}=\mathrm{rho} / \mathrm{t}=1 / \mathrm{qmu}_{\mathrm{p}} \mathrm{pt}=\left[\left(1.602^{*} 10^{-19}\right)(350)\left(4^{*} 10^{16}\right)\left(10^{-4}\right)\right]^{-1}=4458 \mathrm{ohm} /$ square
iv) Suppose any voltage between 0 V and 5 V can be applied to Region I. What fixed voltage ("bias") would you apply to Region II, to guarantee that no current would ever flow between Region I and Region II? Briefly explain your answer. [$\mathbf{3} \mathbf{~ p t s}$]

To prevent current from flowing, we need to ensure that the p-n junction will never be forward biased. Thus, the n-type region must be biased at 5 V or higher.
b) If a diode is operated only within a small range of forward-bias voltages, its behavior can be accurately modeled by a resistor, whose value is dependent on the bias voltage. Derive an expression for the diode "small-signal" resistance:
$\mathrm{R}_{\text {diode }}=(\mathrm{d} / / \mathrm{dV})^{-1}$ in terms of the saturation current Is, the bias voltage V , and the absolute temperature T . [5 pts]
$\mathrm{I}=\mathrm{I}_{\mathrm{s}}(\mathrm{eqV} / \mathrm{kT}-1)$
$\mathrm{dI} / \mathrm{dV}=\mathrm{I}_{\mathrm{s}}(\mathrm{q} / \mathrm{kT}) \mathrm{eqv} / \mathrm{kT}$
$\mathrm{R}_{\text {diode }}=\left(\mathrm{kT} / \mathrm{qI}_{\mathrm{s}}\right) \mathrm{e}-\mathrm{qV} / \mathrm{kT}$
c) Plot V_{L} vs. $\mathrm{V}_{\text {IN }}$ for $-10 \mathrm{~V}<\mathrm{V}_{\text {IN }}<10 \mathrm{~V}$ on the axes provided, for the circuit below. Note that the diode is a perfect rectifier. Label the axes. [5 pts]

When the diode is off, we have
a simple voltage-divider circuit

$$
V_{L}=\frac{10}{5+10} V_{1 N}=\frac{2}{3} V_{1 N}
$$

Diode turns on when V_{L} reaches $2 V$, ice. when $\frac{2}{3} V_{I N}=2 V$, or $V_{\mathbb{N}}=3 \mathrm{~V}$

$$
\text { or } V_{\mathbb{N}}=3 \mathrm{~V}
$$

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams
please contact examfile@hkn.eecs.berkeley.edu.

