EECS40, Spring 2000
 Midterm 1 solutions
 Prof King

Problem \#1

a)

A	B	G
0	0	1
0	1	0
1	0	0
1	1	1

b)

$G=(\operatorname{not} A)(n o t B)+A B$

c)

3 unit gate delays

The longest path between the input variables and the output variable is 3 logic gates. Therefore, we need to wait for a period of 3 unit gate delays after an input variable is changed, before we can trust the value of G to be valid.
d)
Draw the timing diagrams for $t=0$ to $t=700 \mathrm{ps}$, for the given logic input values A and B. $[10 \mathrm{pts}]$

$E F$	G	
0	0	1
0	1	1
1	0	1
1	1	0

$$
\begin{aligned}
& 1 \\
& 0
\end{aligned}
$$

logic value of $G=\overrightarrow{\varepsilon F}$

Problem \#2

a)

Rab = 13 ohms

b)

* To achieve an equivalent resistance lower than the individual resistors, we should connect resistors in parallel
* But the parallel combination of 210 kohm resistors is 5 kohm -- too low!
=> need to increase the resistance of one of the parallel branches
* Try parallel combination of a 10 kohm resistor and 210 kohm resistors in series:
$(20 * 10) /(20+10)=6.7 \mathrm{kohm}-$ too high!
* Try increasing the resistance of one parallel branch by only 5 kohm (10 kohm II 10 kohm) instead of 10 kohm
$\left(15^{*} 10\right) /(15+10)=6 \mathrm{kohm}!$

c)

(ground is placed at the bottom of the diagram)

i)

Vcd $=4 \mathrm{~V}$

I3 $=0$ since terminal c is not connected. Thus the current flowing through R1 equals the current flowing through R2, i.e. we have a voltage divider.
$\Rightarrow \mathrm{Vbd}=(\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)) * 6=(2 /(1+2)) * 6=4 \mathrm{~V}$
Since there is no voltage drop across R 3 (because $\mathrm{I} 3=0$), $\mathrm{Vc}=\mathrm{Vb}$
$\Rightarrow>\mathrm{Vcd}=\mathrm{Vbd}=4 \mathrm{~V}$

ii)

(underscore denotes subscript for uppercase variables)

P_I = $\mathbf{6} \mathbf{~ m W}$ absorbed

The voltage across the current source is established by the voltage source and is equal to 6 V .
P_I $=\mathrm{IV}=(1 \mathrm{~mA})(6 \mathrm{~V})=6 \mathrm{~mW}$
Since positive current is entering the positive terminal of the current source it is absorbing power
iii)

Parameter	value will:	Brief Explanation
Vbd	decrease	The resistance between b and d decreases; by the voltage-divider formula, Vbd decreases

I1	increase	Total resistance between a and d decreases; Vad remains $6 \mathrm{~V} ; \mathrm{I} 1=\mathrm{Vad} /$ Rad
Power developed by voltage source	increase	Since I1 increases, the current supplied by the voltage source increases

iv)

$13=1.5 \mathrm{~mA}$

Equivalent resistance between terminals a and d is
$\mathrm{R} 1+\mathrm{R} 2 \| \mathrm{R} 3=1+(2 * 2) /(2+2)=2 \mathrm{kohm}$
$=>\mathrm{I} 1=(6 \mathrm{~V}) /(2 \mathrm{kohm})=3 \mathrm{~mA}$
Using current-divider formula, $\mathrm{I} 3=(2 /(2+2))^{*}(3 \mathrm{~mA})=1.5 \mathrm{~mA}$

Problem \#3

(underscore denotes subscript for uppercase variables)
a)

nodal equations:

$(\mathrm{V}$ _AA -Va$) / \mathrm{R} 1+\mathrm{I}$ BB - I_CC $+(\mathrm{Vb}-\mathrm{Va}) / \mathrm{R} 3=0$
$(\mathrm{Va}-\mathrm{Vb}) / R 3-(\mathrm{V}-\bar{B} B+\mathrm{V} \overline{\mathrm{b}}) / \mathrm{R} 4+(\mathrm{Vc}-\mathrm{Vb}) / R 5=0$
I_CC + (Vb -Vc$) / \mathrm{R} 5-\mathrm{Vc} / \mathrm{R} 6=0$
Apply Kirchhoff's Current Law to nodes a, b, c:
(sum of currents entering a node $=0$)
get 3 independent equations for 3 unknowns ($\mathrm{Va}, \mathrm{Vb}, \mathrm{Vc}$) $\Rightarrow>$ can solve to find unknowns
b)

nodal equations:

(V_AA - Va)/R1 + I_BB - (V_CC + Vb)/R3 + I_CC = 0
$(\mathrm{Vb}-\mathrm{Vc}) / \mathrm{R} 4+\mathrm{I} \mathbf{C} \bar{C}=\mathbf{0}$
$\mathbf{V b}-\mathbf{V a}=\mathbf{V}$ _BB

Current flowing through the voltage source V_BB cannot be expressed as a function of the node voltages Va and Vb
=> use the "supernode" approach
Applying Kirchhoff's Current Law to the supernode and node c:
supernode: $\left(\mathrm{V} _\mathrm{AA}-\mathrm{Va}\right) / \mathrm{R} 1+\mathrm{I}$-BB $+\left(-\mathrm{V} _\mathrm{CC}-\mathrm{Vb}\right) / \mathrm{R} 3+\mathrm{I}$-CC $=0$
node c : $(\mathrm{Vb}-\mathrm{Vc}) / \mathrm{R} 4+\mathrm{I}$ CC $=0$
Need one more equation in order to be able to solve for the 3 unknowns:
$\mathrm{Vb}-\mathrm{Va}=\mathrm{V} _\mathrm{BB}$

Problem \#4

a)

V Th $=2 \mathrm{~V}$
 R_{-}^{-}Th $=\mathbf{4}$ kohm

(x is the node between the 3 kohm and 2 kohm resistors)
The open-circuit voltage, Voc, is equal to Vab, which is equal to Vxb since no current is flowing through the 2 kohm resistor. Applying KCL to node x (defining node b as the reference node)
$->(5-V x) / 3+(-4-V x) / 6=0$
\Rightarrow $6=3 \mathrm{Vx}=>\mathrm{Vx}=2 \mathrm{~V}$ therefore $\mathrm{Voc}=\mathrm{V}$ _Th $=2 \mathrm{~V}$
To find $R _T h$, set all the independent sources to zero:

b)

I N = 0.5 mA
 $\overline{\mathrm{R}} \mathrm{N}=\mathbf{4} \mathrm{kohm}$

R_N = R_Th $=4$ kohm
$\mathrm{I} _\mathrm{N}=\mathrm{V} _\mathrm{Th} / \mathrm{R} _\mathrm{Th}=(2 \mathrm{~V}) /(4 \mathrm{kohm})=0.5 \mathrm{~mA}$
c)

When $\mathrm{I}=0, \mathrm{~V}=-6 \mathrm{~V}$
When $\mathrm{V}=0$ (i.e. terminals a and b shorted together), $\mathrm{I}=(0-(-6 \mathrm{~V})) / 200=>\mathrm{I}=30 \mathrm{~mA}$

d)

P1k = 25 mW

nodal equations: $\left(\mathrm{V} _\mathrm{AA}-\mathrm{Va}\right) / \mathrm{R} 1+\mathrm{I} _\mathrm{BB}-\left(\mathrm{V} _\mathrm{CC}+\mathrm{Vb}\right) / \mathrm{R} 3+\mathrm{I} _\mathrm{CC}=0(\mathrm{Vb}-\mathrm{Vc}) / \mathrm{R} 4+\mathrm{I} _\mathrm{CC}=0 \mathrm{Vb}-\mathrm{Va}=$ B_BB$_{-}$

Using voltage-divider formula,
$\mathrm{V}=(1000 /(1000+200)) *(-6)=-5 \mathrm{~V}$
$\mathrm{P}=\mathrm{IV}=(\mathrm{V} / \mathrm{R})^{*} \mathrm{~V}=\mathrm{V}^{\wedge} 2 / \mathrm{R}=\left((-5)^{\wedge} 2\right) / 1000=25 \mathrm{~mW}$

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
 University of California at Berkeley
 If you have any questions about these online exams
 please contact examfile@hkn.eecs.berkeley.edu.

