EECS40 MT1

EECS 40 MIDTERM 1

(note letters following a _ means subscript, ex V_ab means the voltage from a to b)

Problem 1: Logic Gates and Timing Diagrams [25 Points]

Consider the following digital logic circuit:

a) Fill out the truth table for the logic function G. [8 points]
b) Write a simple logical expression for the function G. [5 points]
c) How many unit gate delays are there between the inputs (A and B) and the output (G)? [2 points] (in other words, how many unit gate delays must you wait, after changing A and/or B, before you can trust the value of G to be valid?)
d) Assume each logic gate has a unit delay $\mathrm{T}=100 \mathrm{ps}$.

Draw the timing diagrams for $t=0$ to $t=700 \mathrm{ps}$, for the given logic input values A and B. [10 points] (in other words, draw the timing diagrams for $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$, and G)

Problem 2: Resistive circuits [30 points]

a) Find the equivalent resistance $R _$ab for the following circuit. [6 points]

b) Suppose you need a 6 k ohm resister for your Tutebot project, but your TA gives you only a supply of 10 k ohm resistors. Being a clever Cal student, how would you connect several 10k ohm resistors together, to achieve a 6 k ohm resistance? [7 points]
(draw the circuit diagram)
c) Consider the following circuit:

$$
\begin{aligned}
& R_{I}=1 \mathrm{k} \Omega \\
& R_{2}=2 \mathrm{k} \Omega \\
& R_{3}=2 \mathrm{k} \Omega
\end{aligned}
$$

i) Find V_cd. [3 points]
ii) Find the power developed/absorbed by the current source, P_I
iii) Indicate in the table below (by checking the appropriate boxes) how various circuit parameters would change if the terminals \mathbf{c} and \mathbf{d} were to be shorted together. Justify your answers. [6 points]

Parameter	Value will:		Bricf Explanation/Justification	
	increase	decrease		
$V_{b d}$				
I_{t}				
Power developed by voltage source				

iv) what is the value of I_3 when the terminals \mathbf{c} and \mathbf{d} are shorted together? [5 points]

Problem 3: Nodal Analysis [20 points]

a) In the circuit below, the independent source values and resistances are known. Use the nodal analysis technique to write 3 equations sufficient to solve for V_a, V_b, V_c. [10 points] DO NOT SOLVE THE EQUATIONS

b) Similarly to part (a), use the nodal analysis technique to write 3 equations sufficient to solve for $\mathrm{V} _$a, $\mathrm{V} _\mathrm{b}$, and V_c. [10 points]
DO NOT SOLVE THE EQUATIONS

EECS40 MT1

Problem 4: Thevenin and Norton Equivalent Circuits [25 points]
a) Find the Thevenin Equivalent Circuit for the following circuit. [10 pts]

b) Use the source transformation method to obtain the Norton Equivalent Circuit for the circuit in part (a). [5 points]

EECS40 MT1

c) The Thevenin Equivalent Circuit for a certain linear circuit is given below. Plot the current (I) versus the output voltage (\mathbf{V}) for the circuit, labelling the \mathbf{y}-intercept and \mathbf{x}-intercept. [5 points]

d) The circuit in part (c) is connected to a 1 k ohm load resistor (placed between the terminals \mathbf{a} and \mathbf{b}. Find the power absorbed in the load resistor, $\mathrm{P}_{-} \mathrm{lk}$ (this is what it says on the test, don't ask me). [5 points]

> Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.

