EECS 40 - FINAL EXAM

13 December 1999

Name: \qquad
Last, First

Student ID: \qquad

TA:
Kusuma \square Chang

Guidelines:

(a) One page of notes allowed (both sides).
(b) You may use a calculator.
(c) Do not unstaple the exam.
(d) Show all your work and reasoning on the exam in order to receive full or partial credit.
(e) This exam contains 16 pages plus the cover page and 2 sheets of scratch paper included at the end of the exam. You can remove these from the rest of the exam if you wish.

Problem	Points Possible	Your Score
1	20	
2	25	
3	30	
4	25	
5	25	
6	20	
7	25	
8	30	
Total	$\mathbf{2 0 0}$	

$$
\begin{aligned}
K & =10^{3} \\
m & =10^{-3} \\
\mu & =10^{-6} \\
n & =10^{-9} \\
p & =10^{-12} \\
f & =10^{-15}
\end{aligned}
$$

Problem 1 Nodal Analysis (20 points)

(a) Write 2 nodal equations sufficient to find voltages A and B.

(b) The switch closes at $t=0$ (after a very long time open). Write 2 nodal differential equations describing V_{x} and V_{y}.

(c) What are the values of V_{x}, V_{y} at $t=0^{+}$and $t \rightarrow \infty$?

Problem 1 Answers
(a)

(b)

(c)

$$
\begin{aligned}
& V_{x}\left(t=0^{+}\right)= \\
& V_{y}\left(t=0^{+}\right)= \\
& V_{x}(t \rightarrow \infty)= \\
& V_{y}(t \rightarrow \infty)=
\end{aligned}
$$

Problem 2 Nerd Contest (25 points)

In a post-Big Game Nerd Competition, teams from Stanford and UCB were asked to draw logic diagrams to implement the following function:

$$
T=A+B C
$$

The Stanford team came up with the following design based on NOR gates

The Berkeley team came up with the following design based on NAND gates:

(a) Fill out the truth tables opposite to evaluate $T_{S S}$ and $T_{B B}$.
(b) Do both circuits function as desired?
(c) Define the unit gate delay of the NOR gates as $\tau_{\text {NOR }}$ and unit gate delay of the NAND as $\tau_{\text {NAND }}$. Assume the outputs, T, are loaded by similar gates. What is the delay of the Stanford circuit and what is the delay of the Berkeley circuit (in terms of $\tau_{\text {NOR }}, \tau_{\text {NAND }}$)?
(a)

FILL OUT WITH ZEROS AND ONES

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{G}	\mathbf{H}	$T_{S S}$	\mathbf{D}	\mathbf{D}
0	0	0					$T_{B B}$	
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

(b)

Function correct?

(yes or no?)

$$
T_{B B} \square
$$

(c) Delay

SS Circuit \qquad

BB Circuit \qquad
(a) The schematic of a CMOS inverter analyzed in Lecture 25 is shown in the figure below. Note the unit gate delay is 16.5 ps when the inverter drives an identical inverter.

Using the same CMOS technology, you are to design (that means draw the schematic of) a 2-input NAND gate [NOT a layout please!]. Please size the devices for equal worstcase rise and fall times, and use $1.5 / 0.18$ as the p-channel device size.

(b) Find the input capacitance and the output resistance of such a NAND gate (worst case). Compute the gate delay assuming the NAND gate drives an input to identical NAND gates. Ignore drain-bulk and interconnect capacitance.
(c) Now draw the schematic of the NOR gate and indicate device sizes needed to get equal (worst-case) rise and fall times. Again use $1.5 / 0.18$ as the p-channel device size.
(d) Find the input capacitance and the output resistance of such a NOR gate. Compute the unit gate delay assuming the NOR gate drives an input to identical NOR gates. Ignore drain-bulk and interconnect capacitance.

Problem 3 Worksheet and Answers
(a)

$\operatorname{PMOS} \frac{W}{L}=\frac{1.5}{0.18}$
$\operatorname{NMOS} \frac{W}{L}=$
(b) $\quad C_{\mathrm{GP}}=$ \qquad fF

$$
C_{\mathrm{GN}}=\ldots \mathrm{fF}
$$

$R=$ \qquad K Unit Gate Delay = \qquad
(c)

$\operatorname{PMOS} \frac{W}{L}=\frac{1.5}{0.18}$
$\operatorname{NMOS} \frac{W}{L}=$ \qquad
(d) \qquad fF \qquad
$R=$ \qquad K Unit Gate Delay = \qquad
(a)

(b)

$$
V_{X}=
$$

\qquad
Power delivered by 1 mA source $=$ \qquad
Power delivered by 2 mA source $=$ \qquad

$$
V_{Y}=
$$

\qquad
Power delivered by 1 mA source $=$ \qquad
Energy stored in $\mathrm{C}_{2}=$ \qquad
(c)

Capacitors are initially uncharged.
Find V_{X} long after the switch is
$V_{X}=$ \qquad closed. Find peak power $P_{\text {MAX }}$ delivered by the voltage source.

$$
P_{\mathrm{MAX}}=
$$

\qquad
(d)

Assume the 4 diodes are perfect rectifiers. (a) What is V_{X} when $V_{1}=5 \mathrm{~V}$? (b) What is V_{X} when $V_{1}=-5 \mathrm{~V}$?
a) $V_{X}=$ \qquad
b) $V_{X}=$ \qquad
(e)

$$
\begin{aligned}
& V_{X}= \\
& V_{Z}=
\end{aligned}
$$

Problem 4 Worksheet

Problem 5 Inverter Transient (25 points)

Inverter A is a CMOS inverter with effective output resistance of $1.5 \mathrm{~K} . V_{D D}=2.5 \mathrm{~V}$ and $V_{T l}=0.7$, $V_{T h}=1.8 \mathrm{~V}$.
The input capacitance of inverter A is $5 \mathrm{fF}, V_{\mathrm{IN}}$ was zero for $t<0$, then a pulse generator (with very low output resistance) produces the input waveform shown above.
(a) Sketch the general form of $V_{\mathrm{OUT}}(t)$.
(b) Calculate V_{OUT} at $t=0+, t=1 \mathrm{nsec}$, and $t=2 \mathrm{nsec}$.
(c) Re-sketch $V_{\mathrm{OUT}}{ }^{(+)}$very carefully and neatly.

Problem 5 Answer Sheet

(a)

(b)
b.1) $\quad V_{\mathrm{OUT}}(t=0+)=$ \qquad
b.2) $\quad V_{\mathrm{OUT}}(t=1 \mathrm{nsec})=$ \qquad
b.3) $\quad V_{\mathrm{OUT}}(t=2 \mathrm{nsec})=$ \qquad
(c)

Problem 6 Thévenin Equivalents (20 points)

Find the Thévenin equivalent circuit for each of the following.
(a)

(b)

(c)

(d)

Problem 6 Worksheet and Answers

(a)

$$
\begin{aligned}
& V_{\mathrm{TH}}= \\
& R_{\mathrm{TH}}=
\end{aligned}
$$

(b)

$$
\begin{aligned}
& V_{\mathrm{TH}}= \\
& R_{\mathrm{TH}}=
\end{aligned}
$$

(c)

$$
\begin{aligned}
& V_{\mathrm{TH}}= \\
& R_{\mathrm{TH}}=
\end{aligned}
$$

(d)

$$
\begin{aligned}
V_{\mathrm{TH}} & = \\
R_{\mathrm{TH}} & =
\end{aligned}
$$

We are designing a CMOS logic circuit with the latest devices that use $L=0.15 \mu \mathrm{~m}$. An inverter schematic is shown for the basic inverter

We need to drive an interconnect wire going across the chip with a capacitance of 192 fF .
(a) Estimate the stage delay (time to switch the output from zero to $V_{D D} / 2$ with the input going from $V_{D D}$ to 0) if this inverter drives the wire directly. The 192 fF load is connected to the node labeled "OUT".
(b) Suppose we insert two "buffer inverters" that have larger W / L (and therefore, lower R_{p}, R_{n}) to drive the load capacitance faster:

Now we suffer 3 stage delays! But let's compute them - maybe it's not so bad. Assume the load on I_{O} is the gate capacitance of I_{A} and similarly that the load on I_{A} is the input capacitance of I_{B}.
(b.1) Compute $C_{G n}$ and $C_{G p}$ for I_{A} and I_{B}.
(b.2) Compute R_{p} and R_{n} for I_{A} and I_{B}.
(c-e) Find the unit gate delay for all 3 stages (input step $V_{D D} \rightarrow 0$ or $0-V_{D D}$ and output moving from 0 to $V_{D D^{\prime}} / 2$ or $V_{D D}$ to $V_{D D^{\prime}}$).
(f) Compare total gate delay with that of part (a).
(a)

Unit gate delay $=$ ps
(b)

(c)

Unit gate delay $=$ \qquad
(d)

Unit gate delay = \qquad
(e)

Unit gate delay $=$ \qquad
(f) Total of $(\mathrm{c})+(\mathrm{d})+(\mathrm{e})$ \qquad versus (a) \qquad

Problem 8 CMOS Technology ($\mathbf{3 0}$ points)

The layout of a CMOS logic circuit is shown below. Also shown on the page opposite is the cross-section EE of the chip.

Our standard CMOS process is:
(1) Start: p-Type Si wafer
(2) Well mask, implant donors
(3) Grow field oxide $0.5 \mu \mathrm{~m}$
(4) Pattern oxide (oxide cut for thin oxide)
(5) Grow gate oxide
(6) Deposit $0.5 \mu \mathrm{~m}$ polysilicon
(7) Pattern polysilicon
(8) Two select masks with implants (masks not shown)
(9) Deposit $0.5 \mu \mathrm{~m}$ oxide
(10) Contact mask, etch oxide
(11) Deposit $0.5 \mu \mathrm{~m}$ metal
(12) Pattern metal
(a) In the space provided, draw cross-section A-A. Use E-E as a guide for scale.
(b) Draw cross-section B-B.
(c) Label the inputs and outputs of this circuit on the figure above. (Note that there are 6 wires entering from the left and of these, only 2 are labeled, namely $V_{D D}$ and ground. You are to label the others and use these labels in part d.)
(d) Write the logic function of the circuit (for example, OUT $=(A+B) \cdot \bar{C})$.

Problem 8 Answers

Cross-section E -- E
(a) \square
Cross-section A-A
(b) \square
Cross-section B-B
(c) (Label figure on opposite page.)
(d) Logic Equation

OUT = \qquad

