University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences

EECS 40 Final Examination

Fall 1998

Prof. Roger T. Howe

December 14, 1998

Name:

Last, first

Student ID _____

Guidelines

1. Closed book and notes; 3, 8.5" x 11" page (both sides) of your own notes are allowed.

- 2. You may use a calculator.
- 3. Do not unstaple the exam.

4. Show all your work and reasoning on the exam in order to receive full or partial credit.

Score

Problem	Points Possible	Score
1	25	
2	20	
3	20	
4	20	
5	15	
Total	100	

1. Digital Logic Gate [24 points]

Process Sequence:

Starting material: phosphorus-doped silicon, concentration $5 \times 10^{17} \text{ cm}^{-3}$

- 1. Deposit 500 nm of silicon dioxide and pattern using the **oxide mask** (dark field)
- 2. Grow 5 nm of thermal silicon dioxide.
- 3. Deposit 500 nm of boron-doped polysilicon and pattern using the **poly mask** (clear field).
- 4. Implant boron and anneal (depth 250 nm and concentration = $1.25 \times 10^{18} \text{ cm}^{-3}$.)
- 5. Deposit 500 nm of silicon dioxide and etch 505 nm of oxide using the **contact mask** (dark field).
- 6. Deposit 500 nm of aluminum and pattern using the metal mask (clear field).

Given: polysilicon sheet resistance: $R = 25 \Omega/$, $\varepsilon_{ox} = 3.45 \times 10^{-13}$ F/cm, $R_{on} = 150 \Omega$ (on resistance for MOSFET)

/////

(a) [6 pts.] Sketch the cross section *A*-*A*' on the graph below. Identify all layers clearly.

(b) [6 pts.] Sketch the cross section *B-B*' on the graph below. Identify all layers clearly.

(c) [5 pts.] Given: metal lines 1-5 on the layout are connected as listed:

1. v_{IN1} **2**. v_{IN2} **3**. $V_{DD} = 2.5$ V **4**. v_{OUT} **5**. Ground.

First, draw the circuit model for the physical structures between nodes 1, 2, 3, and 4 using the correct MOSFET symbol. Second, redraw the circuit model using the "switch model" for the transistors. Give numerical values for any resistors or capacitors; you can neglect the drain-to-bulk capacitors.

(d) [4 pts] Draw the circuit model for the physical structures between nodes 4 and 5 *only*. Given: for finding the resistance, there are 70 squares of polysilicon between nodes 4 and 5. Hint: it is *not* necessary to use multiple lumps here.

(f) [4 pts.] What is the maximum value of the output voltage in Volts?

2. CMOS digital circuit [20 points]

The waveforms for $v_A(t)$, $v_B(t)$, and $v_C(t)$ are:

- (a) [2 pts.] The input voltages to this circuit have been constant for a long time for t < 0. What are the numerical values of the voltages v_{OUT1} and v_{OUT2} for t < 0?
- (b) [4 pts.] Find the waveform $v_{OUT1}(t)$ for the time interval 0 < t < 0.4 ns.

(c) [4 pts.] Find the waveform $v_{OUT2}(t)$ for the time interval 0 < t < 0.4 ns.

(d) [4 pts.] Find the waveform $v_{OUT1}(t)$ for the time interval 0.4 < t < 0.8 ns. If you couldn't solve part (b), you can assume for this part that $v_{OUT1}(0.8 \text{ ns}) = 2.5 \text{ V}$.

(e) [6 pts.] Sketch the waveforms $v_{OUT1}(t)$ and $v_{OUT2}(t)$ on the graphs below over the interval 0 < t < 1.8 ns. Note that the logic thresholds for the pad driver are different from those of the regular CMOS logic gate. Your sketch should be consistent with your answers for (a) – (d).

3. Linear circuit analysis [20 points]

(a) [8 pts.] What is the numerical value of the Norton equivalent current I_N for this two-terminal linear network?

(b) [8 pts.] What is the numerical value of the Thevenin equivalent resistance R_{Th} for this two-terminal linear network?

(c) [4 pts.] What is the numerical value of the maximum power that can be extracted from this two-terminal network in Watts? What is the numerical value of the load resistance R_L required for this case? If you couldn't solve parts (a) and (b), you can assume for this part that $I_N = 20$ mA and $R_{Th} = 8$ k Ω .

4. Inductor-resistor circuit analysis [20 points]

(a) [4 pts.] What is the numerical value of the inductor current $i_L(0)$ when t = 0.

(b) [4 pts.] Find the numerical value of the final inductor current, $i_L(t \to \infty)$.

(c) [6 pts.] Find the inductor current $i_L(t)$ for $0 \le t \le 10 \, ps$.

(d) [6 pts.] Find the inductor current $i_L(t)$ for $t \ge 10 ps$.

5. Capacitive coupling [15 points]

 $C_{Gn} + C_{Gp} = 25 \text{ fF}$

The interconnect (line 1) between inverters A and B runs close by lines 2 and 3, as shown in the cross section, for a distance of 200 μ m. The interconnects are surrounded by SiO₂. Lines 2 and 3 are floating (not connected to anything at either end).

(a) [5 pts.] Draw the circuit model for the pull-up transition of inverter *A*. Include the numerical values of the capacitors between lines 1, 2, and 3 (and between them and the grounded substrate); you can neglect the interconnect resistance. Given: ε_{ox} = 3.45 x 10⁻¹³ F/cm.

(b) [5 pts.] Find the peak voltage $v_{2,max}$ on line 2 after the pull-up transition of inverter A.

(c) [5 pts.] Find the peak voltage $v_{3,max}$ on line 3 after the pull-up transition of inverter A.