University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences EECS 40 Final Examination

Name: \qquad Student ID \qquad

Guidelines

1. Closed book and notes; 3, 8.5" x 11 " page (both sides) of your own notes are allowed.
2. You may use a calculator.
3. Do not unstaple the exam.
4. Show all your work and reasoning on the exam in order to receive full or partial credit.

Score

Problem	Points Possible	Score
1	25	
2	20	
3	20	
4	20	
5	15	
Total	100	

1. Digital Logic Gate [24 points]

Process Sequence:

Starting material: phosphorus-doped silicon, concentration $5 \times 10^{17} \mathrm{~cm}^{-3}$

1. Deposit 500 nm of silicon dioxide and pattern using the oxide mask (dark field)
2. Grow 5 nm of thermal silicon dioxide.
3. Deposit 500 nm of boron-doped polysilicon and pattern using the poly mask (clear field).
4. Implant boron and anneal (depth 250 nm and concentration $=1.25 \times 10^{18} \mathrm{~cm}^{-3}$.)
5. Deposit 500 nm of silicon dioxide and etch 505 nm of oxide using the contact mask (dark field).
6. Deposit 500 nm of aluminum and pattern using the metal mask (clear field).

Given: polysilicon sheet resistance: $R=25 \Omega /, \varepsilon_{o x}=3.45 \times 10^{-13} \mathrm{~F} / \mathrm{cm}$, $R_{\text {on }}=150 \Omega$ (on resistance for MOSFET)

\square

T/G

(a) [6 pts.] Sketch the cross section $\boldsymbol{A} \boldsymbol{-} \boldsymbol{A}$ ' on the graph below. Identify all layers clearly.

(b) [6 pts.] Sketch the cross section $\boldsymbol{B}-\boldsymbol{B}$ ' on the graph below. Identify all layers clearly.

(c) [5 pts.] Given: metal lines 1-5 on the layout are connected as listed:

1. $v_{I N 1}$
2. $v_{I N 2}$
3. $V_{D D}=2.5 \mathrm{~V}$
4. $v_{\text {OUT }}$
5. Ground.

First, draw the circuit model for the physical structures between nodes 1, 2, 3, and 4 using the correct MOSFET symbol. Second, redraw the circuit model using the "switch model" for the transistors. Give numerical values for any resistors or capacitors; you can neglect the drain-to-bulk capacitors.
(d) [4 pts] Draw the circuit model for the physical structures between nodes 4 and 5 only. Given: for finding the resistance, there are 70 squares of polysilicon between nodes 4 and 5. Hint: it is not necessary to use multiple lumps here.
(f) [4 pts.] What is the maximum value of the output voltage in Volts?
2. CMOS digital circuit [20 points]

The waveforms for $v_{A}(t), v_{B}(t)$, and $v_{C}(t)$ are:

(a) [2 pts.] The input voltages to this circuit have been constant for a long time for $t<0$. What are the numerical values of the voltages $v_{\text {OUT1 }}$ and $v_{\text {OUT2 }}$ for $t<0$?
(b) [4 pts.] Find the waveform $\boldsymbol{v}_{\text {outi }}(t)$ for the time interval $0<t<0.4 \mathrm{~ns}$.
(c) [4 pts.] Find the waveform $\operatorname{voutr}^{(t)}$) for the time interval $0<t<0.4 \mathrm{~ns}$.
(d) [4 pts.] Find the waveform $\boldsymbol{v}_{\text {outi }}(t)$ for the time interval $0.4<t<0.8 \mathrm{~ns}$. If you couldn't solve part (b), you can assume for this part that $\boldsymbol{v}_{\text {out1 }}(0.8 \mathrm{~ns})=2.5 \mathrm{~V}$.
(e) [6 pts.] Sketch the waveforms $v_{\text {OUT1 }}(t)$ and $v_{\text {OUT2 }}(t)$ on the graphs below over the interval $0<t<1.8 \mathrm{~ns}$. Note that the logic thresholds for the pad driver are different from those of the regular CMOS logic gate. Your sketch should be consistent with your answers for (a) - (d).

3. Linear circuit analysis [20 points]

(a) [8 pts.] What is the numerical value of the Norton equivalent current I_{N} for this twoterminal linear network?
(b) [8 pts.] What is the numerical value of the Thevenin equivalent resistance $R_{T h}$ for this two-terminal linear network?
(c) [4 pts.] What is the numerical value of the maximum power that can be extracted from this two-terminal network in Watts? What is the numerical value of the load resistance R_{L} required for this case? If you couldn't solve parts (a) and (b), you can assume for this part that $I_{N}=20 \mathrm{~mA}$ and $R_{T h}=8 \mathrm{k} \Omega$.
4. Inductor-resistor circuit analysis [20 points]

(a) [4 pts.] What is the numerical value of the inductor current $i_{L}(0)$ when $t=0$.
(b) [4 pts.] Find the numerical value of the final inductor current, $i_{L}(t \rightarrow \infty)$.
(c) [6 pts.] Find the inductor current $i_{L}(t)$ for $0 \leq t \leq 10 p s$.
(d) [6 pts.] Find the inductor current $i_{L}(t)$ for $t \geq 10 \mathrm{ps}$.
5. Capacitive coupling [15 points]

Silicon substrate (ground)

Inverters A and B: $\quad R_{n}=R_{p}=100 \Omega \quad V_{D D}=2.5 \mathrm{~V}$
$C_{G n}+C_{G p}=25 \mathrm{fF}$

The interconnect (line 1) between inverters A and B runs close by lines 2 and 3, as shown in the cross section, for a distance of $200 \mu \mathrm{~m}$. The interconnects are surrounded by SiO_{2}. Lines 2 and 3 are floating (not connected to anything at either end).
(a) [5 pts.] Draw the circuit model for the pull-up transition of inverter A. Include the numerical values of the capacitors between lines 1,2 , and 3 (and between them and the grounded substrate); you can neglect the interconnect resistance.
Given: $\varepsilon_{o x}=3.45 \times 10^{-13} \mathrm{~F} / \mathrm{cm}$.
(b) [5 pts.] Find the peak voltage $v_{2, \max }$ on line 2 after the pull-up transition of inverter A.
(c) [5 pts.] Find the peak voltage $v_{3, \max }$ on line 3 after the pull-up transition of inverter A.

