Electrical Engineering 40/40I/41I

Midterm 2 - Fall 1995

Professors S. Schwarz (40) and R.M. White (40I/41I)
Problem 1 [21\%]: Phasors
(a) Put a cross (X) by each of the expressions below which could be a phasor voltage:

\qquad $(3+j 7) \cos \left(\omega t+27^{\circ}\right) \quad+3 j$ $-3 j-3 e^{j 03}$ \qquad
(b) Write expressions for the real currents for each of the following, assuming that the frequency $\mathrm{f}=60 \mathrm{kHz}$ and $\mathrm{I}_{0}=10 \mathrm{~mA}$, using the convention of the text. (Angles are in radians.)
$I_{0} e^{j 3}$
$I_{0}(3+j 4)$
$j I_{0} e^{j \pi / 2}$
(c) Convert the following real expression to the corresponding phasors:

$$
\begin{aligned}
& v(t)=4 \sin (377 t) m V \\
& v(t)=12 \cos (377 t-\pi / 2) m V \\
& v(t)=\left(\sqrt{\frac{1}{2}}\right) \sin (377 t-\pi / 4) m V
\end{aligned}
$$

Page 1

Problem 2 [21\%]: Circuit Elements

(a) [3\%] List two passive circuit elements that store energy:
(b) [9\%] Suppose that in a portion of the circuit for an electronic door opener you need an impedance having a 10 -ohm real part and a 30 -ohm negative reactive part at a frequency of 60 kHz . Show two circuits that provide this.
(c) $[9 \%]$ In this circuit I is a sinusoidal ideal current source with amplitude $1 \mathrm{~mA}, \mathrm{C}=1^{\mu} \mathrm{F}, \mathrm{R}=1000^{\Omega}$, $f=60 \mathrm{~Hz}$. Find the amplitude of the sinusoid V.

Problem 3 [18\%]: Op-Amps

The voltage $\mathrm{vs}(\mathrm{t})$ is an endless sinusoid with frequency 1 MHz and amplitude 2 V , as shown here:

(a) Assume the op-amp is completely ideal and its power-supply voltages are \&\#17715V. Sketch vout showing vertical scale and maximum values.

Page 3
(b) Same question as (a), except the op-amp has maximum output current of 50 mA . Show the vertical scale and maximum values.

(c) Same question as (a); op-amp is completely ideal except that it has a finite gain-bandwidth product of 1E6 $1 / \mathrm{s}$. Show the amplitude scale and maximum values.

Page 4
Problem 4 [20\%]: Diodes

In the above circuit, the diodes are to be represented by the large signal diode model, (the one that looks like this:)

(a) Suppose $\mathrm{vs}_{\mathrm{s}}(\mathrm{t})$ is

Graph vout (t) clearly on the same set of axes.
(b)

vs and the diode are the same as in part (a). Find the time-averaged power dissipated in the diode, averaged over the 4 -second period.

Page 5

Problem 5 [20\%]: RC Circuits and Bode Plots

This problem relates to a probe often used with oscilloscopes to prevent them from adverseley affecting circuits whose voltages they measure.
(a) The basic idea of the probe is shown here: The ideal oscilloscope would be connected at terminals C-D and the probe would be connected to the circuit under test at A-B. (Resistor R_{p} represents an actual resistor built into the probe, and resistor Rin represents the input resistance of the oscilliscope.)

Sketch the Bode plot in dB of $\left|\mathrm{V}_{\mathrm{out}} / \mathrm{Vin}^{\prime}\right|$ for this circuit. Indicate slopes and break frequencies (if any).

Page 6
(b) Sketch the Bode plot for another circuit in which

$$
\left|\frac{v_{o u t}}{v_{i n}}\right|=\frac{10^{6}+100 \omega^{2}}{\omega \sqrt{\omega^{4}+10^{12}}}
$$

Indicate slopes and break frequencies (if any).
$\left|\frac{v_{s u t}}{v_{m n}}\right|(d B)$

Page 7

\&\#169 1995 by Schwarz and White translated to HTML by Walter Hsiao Eta Kappa Nu (November 1995)

