Electrical Engineering 40/40I/41I
 Midterm 1 - Fall 1995

Professors S. Schwarz (40) and R.M. White (40I/41I)
Problem 1: [25\%]
Circuit models for a battery and a physical voltmeter are shown below:

CIRCUIT
ELEMENTS

\leftarrow MODELS

A circuit is constructed as shown below:

When the switch is open (not connected) the physical voltmeter reads 8 volts. When the switch is closed (connected) the physical voltmeter reads 6 volts. Rind Rв and Vв.

$\mathrm{R}_{\mathrm{E}}=$	ohms
$\mathrm{V}_{\mathrm{E}}=\square \quad$ volts	

Problem 2: [25\%]

EE40/40I/41I - Midterm 1 (Fall 95)

A two-terminal subcircuit is shown with terminals A and A'. Find its Th\&\#233 venin equivalent, making your method clear. (Label the terminals AA' in your equivalent circuit)

$R_{T H}=\square$	ohms
$V_{T H}=\square$	volts

Page 2
Problem 3: [25\%]
(a) Plot the I-V characteristic of the Norton equivalent circuit having terminals B-B' on the axes below:

(b) The I-V characteristic of a load device is also plotted on these azes. If the load device is connected to terminals B-B', what current, Id, flows and what voltage, VD_{D}, appears across the load device?

(c) Under the conditions of part (b), find the power delivered to the load device.

Page 3
Problem 4: [25\%]

In the above circuit the op-amp has an abnormally low voltage amplification; in fact, $\mathrm{A}=5$. Its input resistance $\mathrm{R}_{\mathrm{i}}=1 \mathrm{M}^{\Omega}$ and $\mathrm{Ro}=0$. Output terminals C, D , are open-circuited.
(a) Re-draw the circuit with the full op-amp equivalent circuit inserted. (Do NOT use the ideal op-amp technique.)
(b) Find the input reisistance looking into terminals E, F. Use the full op-amp model. (Do NOT use the ideal op-amp technique.) Output terminals C, D are open-circuited.

$$
\text { Page } 4
$$

\&\#169 1995 by Schwarz and White translated to HTML by Walter Hsiao

Eta Kappa Nu (November 1995)

