EECS 40, Fall 2009
 Midterm Exam \#1

Oct 1, 2009
Total Time Allotted: 80 minutes
Total Points: 100

DO ALL WORK ON EXAM PAGES (total ? pages)

1. This is a closed book exam. You are allowed to bring one sheet (8.5 " $\times 11^{\prime \prime}$) of notes.
2. You can use a calculator. NO cell phone or computer.
3. If you put down the wrong answer, partial credits will be given only if you show the correct steps.
4. Points will be taken off for answers without units.

Last (Family) Name: \qquad SOLUTIONS \qquad

First Name: \qquad

Student ID: \qquad Discussion Session (\# or TA): \qquad

Signature: \qquad

Problem 1 (20 points)	
Problem 2 (20 Points)	
Problem 3 (10 Points)	
Problem 4 (20 Points)	
Problem 5 (15 Points)	
Problem 6 (15Points)	
TOTAL (100 points)	

Problem 1 Circuit elements, power, and energy (20 points total)

The following circuit is at steady state condition (i.e. turned on for a long time)

(a) (2 points each) Check the appropriate box for power supplied/ absorbed by the following circuit elements

	Supplies power	Absorbs power	Zero power
10 V voltage source			$\sqrt{ }$
3 V voltage source			$\sqrt{ }$
$1 \mathrm{k} \Omega$ resistor			$\sqrt{ }$
5 V voltage source	$\sqrt{ }$		
1 A current source		$\sqrt{ }$	
1 Farad capacitor			$\sqrt{ }$
1 Henry inductor			$\sqrt{ }$

(2 points) Calculate the power dissipated by the 2 . resistor
Capacitor acts like open, Current through 2Ω resistor $=1 \mathrm{~A}$.
Power $=\mathrm{i}^{2} \mathrm{R}=2 \mathrm{Watt} \mathrm{s}$
(2 points) Calculate the voltage ($\mathrm{vab}_{\mathrm{ab}}$) across the 1 A source.
$\mathrm{V}_{\mathrm{ab}}=+5 \mathrm{~V}-1 \mathrm{~A} \bullet 2 \Omega=+3 \mathrm{~V}$
(2 points) Calculate the energy stored in the 1 F capacitor.
Voltage across capacitor $=$ voltage across resistor $=1 \mathrm{~A} \bullet 2 \Omega=2 \mathrm{~V}$
Energy $=1 / 2\left(C V^{2}\right)=1 / 2\left(1 \bullet 2^{2}\right)=2$ Joules

Problem 2 Nodal Analysis (20 points)

Let $R_{1}=1 \mathrm{k} \Omega, R_{2}=2 \mathrm{k} \Omega, R_{3}=3 \mathrm{k} \Omega, R_{4}=4 \mathrm{k} \Omega, G=5 \mathrm{mS}, v_{s}=2.5 \mathrm{~V}$.
a) Set up the equations to solve this problem by nodal analysis (analytically - no numbers). Eliminate current variables and express all of your equations in terms of voltages only. (10 pts)
We have four nodes, of which one is reference and one is fixed at v_{s}. This leaves two unknown node voltages, which require two equations. Summing the currents into each of the other two nodes, and re-expressing currents in terms of voltages using Ohm's law, yields the following equations:
$\frac{v_{s}-v_{1}}{R_{1}}-\frac{v_{1}}{R_{2}}+G v_{x}-\frac{v_{1}}{R_{3}+R_{4}}=0$
$\frac{v_{2}-v_{1}}{R_{3}}+\frac{v_{2}}{R_{4}}=0$
Modifications of these equations (such as re-expressing v_{x} in terms of v_{1} and v_{2}) are also accepted.
a) Solve the equations. Give numerical answers to 3 significant digits. (10 pts)
$v_{1}=v_{s} \frac{\frac{1}{R_{1}}+G}{\frac{1}{R_{1}}+G+\frac{1}{R_{2}}+\frac{1}{R_{3}+R_{4}}}=2.26 \mathrm{~V}$
$v_{2}=v_{1} \frac{R_{4}}{R_{3}+R_{4}}=1.29 \mathrm{~V}$

Problem 3 Superposition (10 points)

For the circuit above, mark all currents you will use to analyse the circuit on the figure. Determine the current values flowing through $\mathrm{R}_{2}, \mathrm{R}_{3}$ and R_{4}
[Hints: use superposition]
Apply I_{1} first-Since R_{1} is in series with the current source, it does not impact the circuit. Also, R_{2} is shorted by the voltage source, so no current flows through it. Current from I_{1} splits equally between R_{3} and R_{4}, so each carries 5 A .

Apply now V_{1}. Since I_{1} is open, no current flows through R_{3} or R_{4}. The $1 V$ source generates current that recirculates through R_{2}, so $\left[\mathrm{R}_{2}\right]=13.3 \mathrm{~mA}$

So $I\left[R_{2}\right]=13.3 \mathrm{~mA}, I\left[R_{3}\right]=I\left[R_{4}\right]=5 \mathrm{~A}$

Problem 4 Thevenin and Norton Equivalent (20 points)

Looking into terminals a and b of a linear circuit, the I-V characteristic is plotted below.

(a) (6 points) Calculate values of the Norton Current I_{N} and the Norton Equivalent resistance R_{N}.
$\mathrm{I}_{\mathrm{N}}=-\mathrm{i}_{\mathrm{sc}}=-30 \mathrm{~mA}$,
$R_{N}=-v_{o c} i_{\text {sc }}=-6 \mathrm{~V} /-30 \mathrm{~mA}=200 \Omega$

(b) (4 points) $\mathrm{A} 1 \mathrm{k} \Omega$ load resistor is connected to the Norton Equivalent Circuit. Calculate the power dissipated by the load resistor

Using current divider formula, current through load resistor
$=-30 \mathrm{~mA}[200 /(200+1000)]=-5 \mathrm{~mA}$
Power $=\mathrm{I}^{2} \mathrm{R}=\left(5 \bullet 10^{-3}\right)^{2} \bullet 1000=25 \mathrm{mWatt}$
(c) (10 points) Find the Thevenin Equivalent of the following circuit, looking into terminals a and b:

With a and b open circuited, $\mathrm{V}_{\mathrm{Th}}=\mathrm{v}_{\mathrm{oc}}=$ voltage across $3 \mathrm{k} \Omega$ resistor $=6 \mathrm{~V}[3 /(3+6)]=+2 \mathrm{~V}$
By setting all independent sources to zero, we get by inspection $R_{T h}=4 \mathrm{k} \Omega$

Problem 5 RL Circuit (15 points)

$R=3 \Omega, L=1 \mathrm{H}, v_{s}=2 \mathrm{~V}$
Initial condition: $i_{L}=-1.5 \mathrm{~A}$
Plot the currents i_{L} and i_{s} and the stored energy W on the axes given. Show the numerical values at $t=0$ and $t=1 \mathrm{~s}$. (5 pts each)
i_{L} :
The voltage across the inductor is known to be v_{s} at all times, so we can immediately integrate the voltage to find the current. $\mathrm{L}=1 \mathrm{H}$ in this problem.
$i_{L}=\int v_{z} d t=v_{s} \cdot t+i_{z}(0)$
The constant of integration is simply our initial condition $i_{L}(0)=-1.5 A$.
Evaluate at $t=1 \mathrm{~s}$ to find $i_{L}(1 \mathrm{~s})=2+(-1.5)=0.5 \mathrm{~A}$.
Note also that this curve crosses 0 at $t=0.75 \mathrm{~s}$.
i_{s} :
We now apply KCL to find:
$i_{s}=i_{L}+\frac{v_{s}}{R}$
The curve for i_{s} is the same as the curve for i_{L}, but shifted up by $v_{s} / R=2 / 3 \mathrm{~A}$. In particular, $\boldsymbol{i}_{s}(0)=-0.83 \mathrm{~A}, \boldsymbol{i}_{s}(1 \mathrm{~s})=1.17 \mathrm{~A}$.

W:
Apply the formula for energy stored in an inductor:
$W=\frac{1}{2} L \cdot i_{L}^{2}$
Since i_{L} is linear, W is a parabola. Its center coincides with the zero-crossing of i_{L}. The two other values of interest are $\boldsymbol{W}(0)=1.13 \mathrm{~J}, \boldsymbol{W}(1 \mathrm{~s})=0.13 \mathrm{~J}$.
Note that stored energy cannot be negative.

Problem 7 Op Amp (15 points)

For the op-amp circuit below

a) Discuss briefly the type of feedback for this OP Amp circuit (5 pts)

Suppose the positive terminal of the first operational amplifier is increased- this will increase its output. Since the second op-amp is configured as an inverting amplifier, the output of the second op-amp will then decrease, and thanks to the resistive divider $\mathrm{R}_{3}-$ R_{4}, so will the positive terminal of the op-amp. Hence, the feedback is negative.
b) Solve for the output voltages $\mathrm{v}_{\mathrm{o} 1}$ and $\mathrm{v}_{\mathrm{o} 2}$ in the terms of the input (10 pts)

Since feedback is negative, virtual short circuit can be applied.
From the inverting configuration, we find $\mathrm{V}_{\text {out2 }}=-3 \mathrm{~V}_{\text {out1 }}$.
The positive terminal of the op-amp must be equal to V_{in}, but also to the resistive divider between R_{3} and R_{4}, i.e. $V_{\text {out2 }} / 3$.
Hence, $V_{\text {out } 2} / 3=-V_{\text {out } 1}=V_{\text {in }}$, or $\mathrm{V}_{\text {out } 1}=-\mathrm{V}_{\text {in }} ; \mathrm{V}_{\text {out } 2}=3 \mathrm{~V}_{\text {in }}$.

