EECS 40, Spring 2007
 Prof. Chang-Hasnain
 Test \#2

October 8, 2007
Total Time Allotted: 50 minutes
Total Points: 100

1. This is a closed book exam. However, you are allowed to bring one page (8.5 " $\times 11^{\prime \prime}$), single-sided notes.
2. No electronic devices, i.e. calculators, cell phones, computers, etc.
3. SHOW all the steps on the exam. Answers without steps will be given only a small percentage of credits. Partial credits will be given if you have proper steps but no final answers.
4. Draw BOXES around your final answers.
5. Remember to put down units. 1 point will be taken off per missed unit.

Last (Family) Name: \qquad

First Name: \qquad

Student ID: \qquad LAB Session: \qquad

Signature: \qquad

Score:	
Problem $1(16 \mathrm{pts})$	
Problem $2(28 \mathrm{pts}):$	
Problem 3 (56 pts):	
Total	

1. (16 pts) Phasors and complex numbers
a) (6 pts) Convert $\vec{V}=\mathrm{V}$ to phasor notation. Both polar and exponential form are acceptable.
$\vec{V}=\frac{4 \sqrt{2}-j 8}{2-j 2 \sqrt{2}}=\frac{4 \sqrt{2}(1-j \sqrt{2})}{2(1-j \sqrt{2})}=2 \sqrt{2} \angle 0 \mathrm{~V}$ (pink)
$\vec{V}=\frac{4 \sqrt{2}+j 8}{2+j 2 \sqrt{2}}=\frac{4 \sqrt{2}(1+j \sqrt{2})}{2(1+j \sqrt{2})}=2 \sqrt{2} \angle 0 \mathrm{~V}$ (white)
$\vec{V}=\frac{4 \sqrt{2}-j 8}{2-j 2 \sqrt{2}}=\frac{4 \sqrt{2}(1-\sqrt{2})}{2(1-j \sqrt{2})}=2 \sqrt{2} \angle 0 \mathrm{~V}$ (yellow)
b) (3 pts) What is $\mathrm{v}(\mathrm{t})$, in cosinusoidal form? Assume frequency is ω.
$v(t)=2 \sqrt{2} \cos (\omega t) \mathrm{V}(\mathrm{all})$
c) (4 pts) Convert \vec{V}_{2} V to phasor notation. Both polar and exponential form are acceptable.
$\vec{V}_{2}=j=e^{j \frac{\pi}{2}}=1 \angle 90 \mathrm{~V}$ (yellow and pink)
$\vec{V}_{2}=-j=e^{-j \frac{\pi}{2}}=1 \angle-90 \mathrm{~V}$ (white)
d) (3 pts) What is $v_{2}(t)$, in cosinusoidal form? Assume frequency is ω.
$v_{2}(t)=\cos \left(\omega t+\frac{\pi}{2}\right) \mathrm{V}$ (yellow and pink)
$v_{2}(t)=\cos \left(\omega t-\frac{\pi}{2}\right) \mathrm{V}$ (white)
2. (28 pts) Complex impedance.
a) (8 pts) $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{4}=\mu \mathrm{F}, \mathrm{R}=\mathrm{Ohm} V(t)=10 \cos (2 \pi f t) \mathrm{V}$, frequency $f=\frac{10^{6}}{2 \pi} \mathrm{~Hz}$ What is the equivalent impedance $\overrightarrow{Z_{A B}}$?
$C_{e q}=\left(C_{1}+C_{2}\right)\left\|\left(C_{3}+C_{4}\right)=(2 \mu F)\right\|(2 \mu F)=1 \mu F$ (yellow)
$\overrightarrow{Z_{A B}}=\frac{1}{j \omega C}=\frac{1}{j\left(10^{6} \mathrm{rads} / \mathrm{s}\right)\left(10^{-6} \mathrm{~F}\right)}=\frac{1}{j} \Omega=1 \angle-90$ (yellow)

$C_{e q}=\left(C_{1}+C_{2}\right)\left\|\left(C_{3}+C_{4}\right)=(4 \mu F)\right\|(4 \mu F)=2 \mu F($ white and pink $)$
$\overrightarrow{Z_{A B}}=\frac{1}{j \omega C}=\frac{1}{j\left(10^{6} \mathrm{rads} / \mathrm{s}\right)\left(2 \times 10^{-6} \mathrm{~F}\right)}=\frac{1}{2 j} \Omega=-\frac{j}{2} \Omega($ white and pink $)$
b) (6 pts) What is the current $i(t)$ in phasor form?
$\overrightarrow{Z_{e q}}=R+C_{e q}=1+\frac{1}{j} \Omega=1-j \Omega=\sqrt{2} \angle-45^{\circ}$ (yellow)
$\overrightarrow{Z_{e q}}=R+C_{e q}=2+\frac{1}{2 j} \Omega=2-\frac{j}{2} \Omega=\frac{\sqrt{17}}{2} \angle \tan ^{-1}\left(-\frac{1}{4}\right)$ (white and pink)
$\vec{V}=10 \angle 0^{\circ}$
$\vec{I}=\frac{\vec{V}}{\overrightarrow{Z_{e q}}}=\frac{10 \angle 0}{\sqrt{2} \angle-45}=5 \sqrt{2} \angle 45^{\circ} A$ (yellow)
$\vec{I}=\frac{\vec{V}}{\overrightarrow{Z_{e q}}}=\frac{10 \angle 0}{\frac{\sqrt{17}}{2} \angle \tan ^{-1}\left(-\frac{1}{4}\right)}=\frac{20}{\sqrt{17}} \angle-\tan ^{-1}\left(-\frac{1}{4}\right) A$ (white and pink)
c) (8 pts) Now replace the four capacitors with inductors $L_{1}=L_{2}=L_{3}=L_{4}=1 \mu \mathrm{H}$ and calculate the equivalent impedance $\overrightarrow{Z_{A B}}$.
$L_{\text {eq }}=\left(L_{1} \| L_{2}\right)+\left(L_{3}+L_{4}\right)=(.5)+(.5)=1 \mu \mathrm{H} \quad$ (yellow)
$L_{e q}=\left(L_{1} \| L_{2}\right)+\left(L_{3}+L_{4}\right)=(1)+(1)=2 \mu H$ (white and pink)

$$
\begin{aligned}
& \overrightarrow{Z_{A B}}=j \omega L_{e q}=j\left(10^{6} \mathrm{rads} / \mathrm{s}\right)\left(10^{-6} \mathrm{H}\right)=j \Omega \text { (yellow) } \\
& \overrightarrow{Z_{A B}}=j \omega L_{e q}=j\left(10^{6} \mathrm{rads} / \mathrm{s}\right)\left(2 \times 10^{-6} \mathrm{H}\right)=2 j \Omega \text { (white and pink) }
\end{aligned}
$$

d) (6 pts) In this case, what is the current $\mathrm{i}(\mathrm{t})$ in phasor form?

$$
\begin{aligned}
& \vec{V}=10 \angle 0^{\circ} \text { (all) } \\
& \overrightarrow{Z_{e q}}=R+L_{e q}=1+j \Omega=\sqrt{2} \angle 45^{\circ} \text { (yellow) } \\
& \vec{I}=\frac{\vec{V}}{\overrightarrow{Z_{e q}}}=\frac{10 \angle 0}{\sqrt{2} \angle 45}=5 \sqrt{2} \angle-45^{\circ} \text { (yellow) } \\
& \overrightarrow{Z_{e q}}=R+L_{e q}=2+2 j \Omega=2 \sqrt{2} \angle 45^{\circ} \text { (white and pink) } \\
& \vec{I}=\frac{\vec{V}}{\overrightarrow{Z_{e q}}}=\frac{10 \angle 0}{2 \sqrt{2} \angle 45}=\frac{5 \sqrt{2}}{2} \angle-45^{\circ} \text { (white and pink) }
\end{aligned}
$$

3. (56 pts) We have a circuit with $\mathrm{R}, \mathrm{L}, \mathrm{C}$ and $\mathrm{v}(\mathrm{t})$ as an input.

(a) (16 pts$)$ If $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ is the voltage across the capacitor C , we can formulate the 2 nd order circuit as follows.

$$
\frac{d^{2} v_{c}(t)}{d t^{2}}+A \frac{d v_{c}(t)}{d t}+B v_{c}(t)=f(t)
$$

What are A, B, and $f(t)$? Express them in terms of R,L,C and $v(t)$.
$A=\frac{R}{L}$
$B=\frac{1}{L C}$
$f(t)=\frac{v(t)}{L C}$
(b) (5 pts) The undamped resonance frequency ${ }_{0}$ is ${ }_{0}=10^{4} \mathrm{~Hz}$ and L is 10 mH , what is the value of C ?
$\omega_{o}=\frac{1}{\sqrt{L C}}$
$C=\frac{1}{\omega_{o}{ }^{2} L}=\frac{1}{\left(10^{4} \mathrm{rad} / \mathrm{s}\right)^{2}(.01 \mathrm{H})}=10^{-6} \mathrm{~F}$
(c) (10 pts) By adding another 300 Ohm resistor in parallel to the R , connecting at points A and B, see Figure below, we find the circuit is critically damped. What is the value of R ?
(NOTE: If you did not get the value for C from part b , full credit awarded for solution including C as a variable.)

$\zeta=1$
Thus:

$$
\begin{aligned}
& \alpha=\omega_{o} \\
& \frac{R_{e q}}{2 L}=10^{4} \mathrm{rad} / \mathrm{s} \\
& R_{e q}=2 L\left(10^{4} \mathrm{rad} / \mathrm{s}\right)=2(.01 \mathrm{H})\left(10^{4} \mathrm{rad} / \mathrm{s}\right)=200 \Omega \\
& R_{e q}=\frac{R(300)}{R+300}=200 \Omega \\
& R=\frac{2}{3}(R+300) \\
& R=600 \Omega
\end{aligned}
$$

(d) (5 pts) Is the original circuit (without the 300 Ohm parallel resistor, see Figure below) overdamped or underdamped?

$\zeta=\frac{\alpha}{\omega_{o}}$
Thus:
$\alpha=\frac{R}{2 L}=\frac{600}{2(.01 H)}=30000$
$\omega_{o}=10^{4} \mathrm{rad} / \mathrm{s}$
$\zeta=3$
Thus the original circuit is overdamped.
Intuitively, the original circuit has a higher resistance, thus more energy is lost across the resistor, damping the circuit more than the critically damped case.
(e) (20 pts) We change the configuration of L and C to be in parallel as shown below, with the original values for R, L and C - the values you got from parts a- c .

What is the resonance frequency ω_{0} ?
What is the damping ratio ζ ?
Is this circuit under-, critically, or over- damped?
(NOTE: If you did not get the values of RLC from parts a-c, you will get full credit if you can give all possible if-then's.)

If a Thevenin to Norton conversion is performed on the voltage source and resistor, it becomes apparent that this is a parallel RLC circuit. We then use the equations for a parallel RLC circuit:
$\omega_{o}=\frac{1}{\sqrt{L C}}=10^{4} \mathrm{rad} / \mathrm{s}$ (same as in the series case)
$\alpha=\frac{1}{2 R C}=\frac{1}{2(600 \Omega)(1 \mu F)}=\frac{2500}{3}$
$\zeta=\frac{\alpha}{\omega_{o}}=\frac{2500}{3\left(10^{4}\right)}=\frac{1}{12}$
$\zeta<1$, so the circuit is underdamped.

