EECS 40, Fall 2006 Prof. Chang-Hasnain Midterm \#2

October 25, 2006
Total Time Allotted: 50 minutes
Total Points: 100 / Bonus: 10 pts

1. This is a closed book exam. However, you are allowed to bring one page (8.5 " $\times 11$ "), single-sided notes PLUS your 1-page notes from midterm 1.
2. No electronic devices, i.e. calculators, cell phones, computers, etc.
3. Slide rules are allowed.
4. SHOW all the steps on the exam. Answer without steps will be given only a small percentage of credits. Partial credits will be given if you have proper steps but no final answers.
5. Remember to put down units. Points will be taken off for answers without units.

Last (Family) Name: \qquad
First Name: \qquad
Student ID: \qquad Discussion Session: \qquad
Signature: \qquad

Score:	110
Problem 1 (16 pts) Complex Impedances	16
Problem 2 (54 pts): Bode Plots	54
Bonus (10 pts):	10
Problem 3 (30 pts): Second-order Circuits	30
Total	110

1. [16 points] Parallel and Series Complex Impedance

a) [8 pts] What is the complex impedance Z_{1} ?

b) [8 pts] What is the complex impedance Z_{2} ?

2. [54 points] Bode Plots:

(a) [10 points] For the above circuit, show

$$
H(f)=\frac{1}{1+j \frac{f}{f_{2}}} \times \frac{1}{1-j \frac{f_{1}}{f}}
$$

Express f_{1} and f_{2} in terms of $\mathrm{R}, \mathrm{L}, \mathrm{C}$. (Hint: Remember $\omega=2 \pi f$)
(b) [6 points] Now Let $R=1 \mathrm{k} \Omega, L=0.16 \mathrm{mH}, \mathrm{C}=0.16 \mathrm{uF}$, what are f_{1} and f_{2} ? Remember to put down units.
(c) [22 pt] Bode Magnitude Plot. You must put down all the steps leading to your results.
Hint: You may consider $f_{1} \ll f_{2}$
[4 points] Write down the expression for $y=10 \log |H(f)|^{2}$
[4 points] As frequency goes to a very small value, what is the slope of y as a function of $\log f$?
[4 points] As frequency goes to a very large value, what is the slope of y as a function of $\log f$?
[4 points] What is $\mathrm{y}, f_{1} \ll f \ll f_{2}$?
[2 points] What is y at f_{1} ?
[2 points] What is y at f_{2} ?
[2 points] What filter is this?

Bonus [5 points] If the input $\left|V_{\text {in }}\right|=1 \mathrm{~V}$ and the frequency is 1 MHz , what is the output $\left|V_{\text {out }}\right|$?

Bonus [5 points] If the input $\left|V_{i n}\right|=1 \mathrm{~V}$ and the frequency is 10 MHz , what is the output $\left|V_{\text {out }}\right|$?
(d) [16 pt total] Bode Phase Plot. You must put down all the steps leading to your results. Hint: You may consider $f_{1} \ll f_{2}$
[4 points] Write down the expression for $\angle H(f)$
[4 points] What does the value of $\angle H(f)$ approaches to as $f \rightarrow 0$?
[4 points] What does the value of $\angle H(f)$ approaches to as $f \rightarrow \infty$?
[2 points] What is $\angle H(f)$ at $f=f_{1}$?
[2 points] What is $\angle H(f)$ at $f=f_{2}$?

3. [30 points] Second-order Circuits:

Assume the switch has been to the left for a long time before switching to the right at $\mathrm{t}=0$.
(a) Find the following values: [18 points] (Hint: What is $V_{o}(t)$ in terms of $V_{c}(t)$?)

$i_{L}(0+)=$	$i_{L}(\infty)=$
$v_{C}(0+)=$	$v_{C}(\infty)=$
$v_{o}(0+)=$	$v_{o}(\infty)=$
$\frac{d}{d t} i_{L}(0+)=$	
$\frac{d}{d t} v_{C}(0+)=$	
$\frac{d}{d t} v_{o}(0+)=$	

(b) [6 points] Write the differential equation in terms of v_{C}.
(c) [6 points] What are the values of the natural frequency $\left(\omega_{0}\right)$ and the damping ratio (ζ) ?

