EECS 40, Fall 2006 Prof. Chang-Hasnain Midterm #2

October 25, 2006 Total Time Allotted: 50 minutes Total Points: 100 / Bonus: 10 pts

- 1. This is a closed book exam. However, you are allowed to bring one page (8.5" x 11"), single-sided notes PLUS your 1-page notes from midterm 1.
- 2. No electronic devices, i.e. calculators, cell phones, computers, etc.
- 3. Slide rules are allowed.
- 4. SHOW all the steps on the exam. Answer without steps will be given only a small percentage of credits. Partial credits will be given if you have proper steps but no final answers.
- 5. Remember to put down units. Points will be taken off for answers without units.

Last (Family) Name:_____ First Name:_____

Student ID:_____Discussion Session:_____

Signature:

Score:	110
Problem 1 (16 pts)	16
Complex Impedances	
Problem 2 (54 pts):	54
Bode Plots	
Bonus (10 pts):	10
Problem 3 (30 pts):	30
Second-order Circuits	
Total	110

1. [16 points] Parallel and Series Complex Impedance a) [8 pts] What is the complex impedance Z₁?

b) [8 pts] What is the complex impedance Z_2 ?

2. [54 points] Bode Plots:

(a) [10 points] For the above circuit, show

$$H(f) = \frac{1}{1 + j\frac{f}{f_2}} \times \frac{1}{1 - j\frac{f_1}{f_1}}$$

Express f_1 and f_2 in terms of R, L, C. (Hint: Remember $\omega = 2\pi f$)

(b) [6 points] Now Let R = $1k\Omega$, L = 0.16mH, C = 0.16 uF, what are f_1 and f_2 ? Remember to put down units.

(c) [22 pt] Bode Magnitude Plot. You must put down all the steps leading to your results. Hint: You may consider $f_1 << f_2$

[4 points] Write down the expression for $y = 10\log|H(f)|^2$

[4 points] As frequency goes to a very small value, what is the slope of y as a function of $\log f$?

[4 points] As frequency goes to a very large value, what is the slope of y as a function of $\log f$?

[4 points] What is $y, f_1 \ll f \ll f_2$?

[2 points] What is y at f_1 ?

UC BERKELEY [2 points] What is y at *f*₂?

[2 points] What filter is this?

Bonus [5 points] If the input $|V_{in}| = 1$ V and the frequency is 1 MHz, what is the output $|V_{out}|$?

Bonus [5 points] If the input $|V_{in}| = 1$ V and the frequency is 10 MHz, what is the output $|V_{out}|$?

(d) [16 pt total] Bode Phase Plot. You must put down all the steps leading to your results. Hint: You may consider $f_1 \ll f_2$ [4 points] Write down the expression for $\angle H(f)$

[4 points] What does the value of $\angle H(f)$ approaches to as $f \rightarrow 0$?

[4 points] What does the value of $\angle H(f)$ approaches to as $f \rightarrow \infty$?

[2 points] What is $\angle H(f)$ at $f = f_1$?

[2 points] What is $\angle H(f)$ at $f = f_2$?

3. [30 points] Second-order Circuits:

Assume the switch has been to the left for a long time before switching to the right at t = 0.

(a) Find the following values: [18 points] (Hint: What is $V_0(t)$ in terms of $V_c(t)$?)

$i_L(0+) =$	$i_L(\infty) =$	
$v_{c}(0+) =$	$v_C(\infty) =$	
$v_o(0+) =$	$v_o(\infty) =$	
$\frac{d}{dt}i_L(0+) =$		
$\frac{d}{dt}v_{c}(0+) =$		
$\frac{d}{dt}v_o(0+) =$		

(b) [6 points] Write the differential equation in terms of v_c .

(c) [6 points] What are the values of the natural frequency (ω_0) and the damping ratio (ζ)?