2. For $\mathrm{t}, 0$, the switch was open and $\mathrm{V}_{\text {out }}=0$. At $\mathrm{t}=0 \mathrm{~s}, \mathrm{~S} 1$ closes. NOTE: $=10^{-6} ; \mathrm{k}=10^{3} ; \mathrm{e}^{-1}=0.37$; $\mathrm{e}^{-2}=0.14$. Remember to put down units.

(a) (12 pts) Construct the differential equation of $\mathrm{V}_{\text {out }}$ in terms of all the given quantities. Hint: you may solve this use Mesh of Nodal analysis, or even simpler, Thevnin equivalent circuit. Write all your steps.
(b) (5pts) Write a closed-form expression for $\mathrm{V}_{\text {out }}(\mathrm{t})$ for $\mathrm{t}>0$
(c) (8 pts) Plot $\mathrm{V}_{\text {out }}$ as a function of time $\mathrm{t}=0$ to $\mathrm{t}=100 \mathrm{~ms}$. Label the \mathbf{y}-axis and all key points: starting value, 1 time constant value, value at infinity

(d) (5pts) As t approaches infinity, what value will i_{3} approach?
(e) (5 pts) Now, suppose someone disturbed the circuit and S1 is re-opened at 40 ms again! Construct the new differential equation.
(f) (6pts) What is the new time constant? What is the new expression for $\mathrm{V}_{\text {out }}(\mathrm{t})$ for $\mathrm{t}>40 \mathrm{~ms}$.
(g) (5pts) in this case, as t approached infinity, what value will i_{3} approach?
(h) (5pts) plot the new $\mathrm{V}_{\text {out }}$ from $\mathrm{t}=0 \mathrm{~ms}$ to 100 ms to include the re-opening of the switch at 40 ms . Label the \mathbf{y}-axis and all key points: starting value, value at switching point, 1 time constant values, value at infinity.

3. (50 pts) Equivalent Circuit.

(b) (5pts) Use KVL, write down the equation of V_{x} in terms of V_{1} and/or V_{2}
(c) (5 pts) Use KCL, write down the equation for V_{1} and solve for V_{1}.
(d) (5 pts) Use KCL write down the equation for V_{2} and solve for V_{2}.
(e) (5 pts) Solve for $\mathrm{V}_{\text {out }}$ (this is simply the Thevenin Voltage)
(f) Now we short the two end terminals

(5 pts) What is V_{1} ?
(g) (5 pts) What is V_{x} ?
(h) (5 pts) what is I_{sc} ?
(i) (5 pts) what is the Thevenin Resistance?
(j) (5 pts) draw the Thevernin Equivalent Circuit.
