2. For t,0, the switch was open and V_{out} =0. At t = 0s, S1 closes. NOTE: =10⁻⁶; k =10³; e⁻¹=0.37; e⁻²=0.14. Remember to put down units.

(a) (12 pts) Construct the differential equation of V_{out} in terms of all the given quantities. Hint: you may solve this use Mesh of Nodal analysis, or even simpler, Thevnin equivalent circuit. Write all your steps.

(b) (5pts) Write a closed-form expression for $V_{out}\left(t\right)$ for t>0

(c) (8 pts) Plot V_{out} as a function of time t=0 to t=100 ms. Label the y-axis and all key points: starting value, 1 time constant value, value at infinity

- (d) (5pts) As t approaches infinity, what value will i₃ approach?
- (e) (5 pts) Now, suppose someone disturbed the circuit and S1 is re-opened at 40 ms again! Construct the new differential equation.
- (f) (6pts) What is the new time constant? What is the new expression for $V_{out}(t)$ for t>40 ms.

- (g) (5pts) in this case, as t approached infinity, what value will i₃ approach?
- (h) (5pts) plot the new V_{out} from t = 0ms to 100 ms to include the re-opening of the switch at 40 ms. Label the y-axis and all key points: starting value, value at switching point, 1 time constant values, value at infinity.

1. (50 pts) Equivalent Circuit.

(b) (5pts) Use KVL, write down the equation of V_{x} in terms of $V_{1}\,\mbox{and/or}\,V_{2}$

(c) (5 pts) Use KCL, write down the equation for V_1 and solve for $V_{1.}$

(d) (5 pts) Use KCL write down the equation for V_2 and solve for V_2 .

(e) (5 pts) Solve for V_{out} (this is simply the Thevenin Voltage)

(f) Now we short the two end terminals

(5 pts) What is V_1 ?

(g) (5 pts) What is V_x ?

(h) (5 pts) what is I_{sc} ?

(i) (5 pts) what is the Thevenin Resistance?	
j) (5 pts) draw the Thevernin Equivalent Circuit.	