EECS 40, Fall, 2004, Midterm 2, White

EECS 40 Midterm Exam II

Fall 2004

Print Name (Last,First) \qquad
Sign Name \qquad

Do not begin exam until you are instructed to start. Note that there are several versions of this exam in the room.
To get credit for a problem, make your method clear to the grader.

1	$/ 24$
2	$/ 16$
3	$/ 15$
4	$/ 22$
5	$/ 23$
Total	$/ 100$

Problem 1 (24 points) General Questions

a. [1] Give a concise definition of the properties of an acceptor atom that could be used in a silicon wafer and explain what it does.
b. [1] What is the power of 50 watts in decibels referred to a reference power of 1 mW (this is often referred to as dBm)?
c. [1] Identify clearly the meaning of the acronym rms.
d. [1] What component can you use to couple a time-varying signal to an amplifier yet keep steady currents from flowing into the amplifier? \qquad
e. [1] List two components that can form a circuit that acts as a frequency filter. and \qquad .
f. [1] Draw a simple analog circuit that employs negative feedback (make clear where the feedback appears).
g. [5] List in the table below different devices that are essentially just semiconductor diodes, and indicate their functions:

Table 1: Diodes

Name of diode Device	Function of diode device (give distinguishing functions, being as specific as you can)
1.	
2.	
3.	
4.	
5.	

Problem 1 (continued)

h. [6] FET structure. On the cross-sectional transistor view of a silicon n-channel transistor shown below, mark the p-type regions with a $\mathbf{1}$, the n-type regions with a $\mathbf{2}$, metallic or heavily conducting regions with a $\mathbf{3}$, insulating regions with a $\mathbf{4}$, regions containing dopants predominantly from Group III of the periodic table with a III, and dopants predominantly from Group V of the periodic table with a V. (If more than one label applies to a particular region use each one that applies.) Also please indicate and name on the diagram the four terminals of the device.

i. [7] Small-signal resistance of a pn diode

One can apply the small-signal approach to pn diodes to represent how they will behave in response to a small variation of their bias current. To see this, first
a. [3] Write the "exponential diode equation" (called the Shockley equation by your text) for the diode current, i_{D}, as a function of the diode voltage, v_{D} : $\left(\right.$ Note: $\mathrm{q}_{\mathrm{e}}=1.6 \times 10^{-19} \mathrm{C}, \mathrm{k}=$ $1.38 \times 10^{-23} \mathrm{JK}^{-1}$.)
b. [4] Find the small-signal resistance of this diode at room temperature when the diode current is 1 mA . (Assume that the diode ideality factor or "emission factor" $\mathrm{n}=1$.) The small-signal resistance r is defined as $r=1 /\left(\operatorname{di}_{D} / \mathrm{dv}_{\mathrm{D}}\right)$. (Hint: Since the saturation current is much smaller than 1 mA , you can approximate i_{D} with just I_{S} times the exponential term.)

Problem 2 (16 points) First-Order Transient

In the circuit below, let $v_{A}(t)=-1 V$ for $t<0$ and $v_{A}(t)=1 V$ for $t>0 . R_{1}=2000 \Omega$, $\mathrm{R}_{2}=3000 \Omega$, and $\mathrm{C}=10 \mu \mathrm{~F}$.

a. [2] Find $v_{C}(t=0-)$.
b. [2] Find $v_{C}(t=0+)$.
c. [2] Find the current i_{1} at $t=0$ -
d. [2] Find $\mathrm{i}_{1}(\mathrm{t}=0+\mathrm{O})$.
e. [4] Find the time constant for this circuit.
d. [4] Find an expression for $v_{C}(t)$ for $t>0$, and sketch it below

Problem 3 (15 points) Op-Amps

a. [7] The op-amp in the circuit below is ideal except that it has a finite gain A. If the measured voltages indicated are found to be $\mathrm{v}_{\text {in }}=4.000 \mathrm{~V}$ and $\mathrm{v}_{\text {out }}=5.000 \mathrm{~V}$, with R_{1} $=1 \mathrm{M} \Omega$ and $R_{2}=3 \mathrm{k} \Omega$, what is the value of A ?

b. [8] For the (ideal) op-amp circuit below find $I, v_{x} / v_{\text {in }}$ and $v_{\text {out }} / v_{\text {in }}$. $R 1=6 \mathrm{k} \Omega$, $\mathrm{R}_{2}=6 \mathrm{k} \Omega, \mathrm{R}_{3}=5 \mathrm{k} \Omega, \mathrm{R}_{4}=3 \mathrm{k} \Omega$. Assume that $\mathrm{v}_{\mathrm{in}}=6 \mathrm{mV}$.

Problem 4 (22 points) Diodes

Each of the diodes in the following circuits is ideal.
a. [6] Find I and V for this circuit $(\mathrm{R}=8 \mathrm{k} \Omega, \mathrm{V}+=+4 \mathrm{~V}, \mathrm{~V}-=-3 \mathrm{~V})$

b. [8] Find I and V for this circuit $(\mathrm{R}=3 \mathrm{k} \Omega, \mathrm{V} 1=+1 \mathrm{~V}, \mathrm{~V} 2=+3 \mathrm{~V}, \mathrm{~V} 3=-3 \mathrm{~V})$ and indicate which diodes are conducting and which are not conducting.

c. [8] The voltage v_{in} in the circuit below is a $1 \mathrm{kHz}, 10 \mathrm{~V}$ peak-to-peak sine wave. $\mathrm{I}=2 \mathrm{~mA}, \mathrm{~V} 2=+10 \mathrm{~V}, \mathrm{R}=1 \mathrm{k} \Omega$. Sketch the waveform resulting at $\mathrm{v}_{\text {out }}$ and indicate the values of the positive and negative peaks.

Problem 5 (23 points) MOSFET

A set of MOSFET characteristics is shown below. Assume that $\mathrm{V}_{\mathrm{T}}=0.5 \mathrm{~V}$.

a. [3] Indicate and label the three regions of MOSFET operation:
b. [6] Write equations for $\mathrm{I}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{D}} \mathrm{S}, \mathrm{V}_{\mathrm{GS}}\right)$ for each of the three regions and the conditions under which they apply. (Express your equations in unambiguous variables: $\mu, \mathrm{C}_{\mathrm{ox}}$, W, L, ...).
Region: \qquad Equation:

Region: \qquad Equation:

Region: \qquad Equation:

The MOSFET is put in the circuit shown below $\left(\mathrm{V}_{\mathrm{B}}=1.5 \mathrm{~V}, \mathrm{R}=12.5 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}\right)$

c. [2] Identify the terminals of the MOSFET.
d. [4] Draw the load line on the plot and find the Q point $\left(\mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{DSQ}}\right)$. $\mathrm{I}_{\mathrm{DQ}}=$ \qquad A
$\mathrm{V}_{\mathrm{DSQ}}=$ \qquad V
e. [4] Assume that you are considering using this circuit as an analog amplifier and are worried about distortion of the signals. For a positive excursion of $v_{\text {in }}$ of 0.5 V how much does $v_{\text {out }}$ change (positive or negative)? For a negative excursion of $v_{\text {in }}$ of -0.5 V how much does $\mathrm{v}_{\text {out }}$ change (positive or negative)?
$v_{\text {out }}$ for positive excursion of $v_{\text {in }}$: \qquad V
$v_{\text {out }}$ for negative excursion of vin: \qquad V
g. [4] Draw a simple two-component circuit that represents this MOSFET under the following two extreme conditions:
$\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}>0, \mathrm{~V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}:$

$V_{G S}-V_{T}<0:$

-0

