EECS 40, Fall, 2004, Midterm 2, White

EECS 40 Midterm Exam II

Fall 2004

Print Name (Last,First)

Sign Name_____

Do not begin exam until you are instructed to start. Note that there are several versions of this exam in the room.

To get credit for a problem, make your method clear to the grader.

1	/24
2	/16
3	/15
4	/22
5	/23
Total	/100

Problem 1 (24 points) General Questions

- a. [1] Give a concise definition of the properties of an acceptor atom that could be used in a silicon wafer and explain what it does.
- b. [1] What is the power of 50 watts in decibels referred to a reference power of 1mW (this is often referred to as dBm)?
- c. [1] Identify clearly the meaning of the acronym *rms*.
- d. [1] What component can you use to couple a time-varying signal to an amplifier yet keep steady currents from flowing into the amplifier?
- e. [1] List two components that can form a circuit that acts as a frequency filter. ______ and ______.
- f. [1] Draw a simple analog circuit that employs negative feedback (make clear where the feedback appears).
- g. [5] List in the table below different devices that are essentially just semiconductor diodes, and indicate their functions:

Table 1: Dioues	
Name of diode	
Device	specific as you can)
1.	
2.	
3.	
4.	
5.	

Table 1: Diodes

Problem 1 (continued)

h. [6] FET structure. On the cross-sectional transistor view of a silicon n-channel transistor shown below, mark the p-type regions with a 1, the n-type regions with a 2, metallic or heavily conducting regions with a 3, insulating regions with a 4, regions containing dopants predominantly from Group III of the periodic table with a III, and dopants predominantly from Group V of the periodic table with a V. (If more than one label applies to a particular region use each one that applies.) Also please indicate and name on the diagram the four terminals of the device.

i. [7] Small-signal resistance of a pn diode

One can apply the small-signal approach to pn diodes to represent how they will behave in response to a small variation of their bias current. To see this, first

- a. [3] Write the "exponential diode equation" (called the Shockley equation by your text) for the diode current, i_D , as a function of the diode voltage, v_D : (Note: $q_e = 1.6 \times 10^{-19} \text{ C}$, $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$.)
- b. [4] Find the small-signal resistance of this diode at room temperature when the diode current is 1 mA. (Assume that the diode ideality factor or "emission factor" n = 1.) The small-signal resistance r is defined as $r = 1/(di_D/dv_D)$. (Hint: Since the saturation current is much smaller than 1 mA, you can approximate i_D with just I_s times the exponential term.)

Problem 2 (16 points) First-Order Transient

In the circuit below, let $v_A(t) = -1$ V for t<0 and $v_A(t) = 1$ V for t>0. $R_1 = 2000 \Omega$, $R_2 = 3000 \Omega$, and $C = 10 \mu F$.

a. [2] Find $v_C(t = 0)$.

- b. [2] Find $v_C(t = 0+)$.
- c. [2] Find the current i_1 at t = 0-.
- d. [2] Find $i_1(t = 0+)$.

(continued on next page)

e. [4] Find the time constant for this circuit.

d. [4] Find an expression for $v_C(t)$ for t>0, and sketch it below

Problem 3 (15 points) Op-Amps

a. [7] The op-amp in the circuit below is ideal except that it has a finite gain A. If the measured voltages indicated are found to be $v_{in} = 4.000$ V and $v_{out} = 5.000$ V, with $R_1 = 1 \text{ M}\Omega$ and $R_2 = 3 \text{ k}\Omega$, what is the value of A?

b. [8] For the (ideal) op-amp circuit below find I, v_x/v_{in} and v_{out}/v_{in} . R1 = 6 k Ω , R₂ = 6 k Ω , R₃ = 5 k Ω , R₄ = 3 k Ω . Assume that v_{in} = 6 mV.

Problem 4 (22 points) Diodes

Each of the diodes in the following circuits is ideal.

a. [6] Find I and V for this circuit ($R = 8 k\Omega$, V + = +4 V, V - = -3 V)

b. [8] Find I and V for this circuit ($R = 3 \text{ k}\Omega$, V1 = +1 V, V2 = +3 V, V3 = -3 V) and indicate which diodes are conducting and which are not conducting.

c. [8] The voltage v_{in} in the circuit below is a 1 kHz, 10 V peak-to-peak sine wave. I = 2 mA, V2 = +10 V, R = 1 k Ω . Sketch the waveform resulting at v_{out} and indicate the values of the positive and negative peaks.

Problem 5 (23 points) MOSFET

A set of MOSFET characteristics is shown below. Assume that $V_T = 0.5 V$.

a. [3] Indicate and label the three regions of MOSFET operation:

b. [6] Write equations for I_D (V_DS , V_{GS}) for each of the three regions and the conditions under which they apply. (Express your equations in unambiguous variables: μ , C_{ox} , W, L, ...).

Region: _____ Equation:

- Region: _____ Equation:
- Region: _____ Equation:

The MOSFET is put in the circuit shown below ($V_B = 1.5 \text{ V}$, $R = 12.5 \text{ k}\Omega$, $V_{DD} = 2.5 \text{ V}$)

- c. [2] Identify the terminals of the MOSFET.
- d. [4] Draw the load line on the plot and find the Q point (I_{DQ} , V_{DSQ}). $I_{DQ} = ____{Q} A \qquad V_{DSQ} = ___{Q} V$
- e. [4] Assume that you are considering using this circuit as an analog amplifier and are worried about distortion of the signals. For a positive excursion of v_{in} of 0.5 V how much does v_{out} change (positive or negative)? For a negative excursion of v_{in} of -0.5 V how much does v_{out} change (positive or negative)?

 v_{out} for positive excursion of v_{in} : _____V v_{out} for negative excursion of vin: _____V

(continued on next page)

g. [4] Draw a simple two-component circuit that represents this MOSFET under the following two extreme conditions:

