EECS 40 MIDTERM 1

FALL 2004
Prof. White

Print Name

Sign Name \qquad

1	$/ 6$
2	$/ 13$
3	$/ 20$
4	$/ 14$
5	$/ 20$
6	$/ 10$
7	$/ 100$
8	
Total	

Problem 1 General Questions [6]

[1] To measure the voltage drop of a current-carrying resistor you put your voltmeter in series with the resistor. True \qquad False \qquad
[1] The amount of current flowing in a resistor decreases linearly as we go from its positive terminal to its negative terminal. True \qquad False \qquad
[1] The equivalent circuit for three inductors in parallel is like that for three resistors in parallel except that L's replace R's. True \qquad False \qquad
[1] List the circuit elements that are linear: \qquad
[1] List the circuit elements that dissipate energy: \qquad
[1] The conductance of a 47Ω resistor is \qquad (value) \qquad (unit)

Problem 2 I-V Plots [13]

[8] a. On the axes given plot the I-V curve for the Thevenin equivalent circuit below, where $\mathrm{V}_{\mathrm{th}}=10 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{th}}=200 \Omega$. (Note: of course for a finite current I_{ab} to flow, something must be connected between terminals a and b .)

[5] b. On the same I-V axes plot the I-V curve for a resistor $R_{L}=400 \Omega$

Problem 3 Voltage Divider, Maximum Power Transfer [20]

[5] a. The voltage divider shown below is supposed to have an output of 5 V and is to draw no more than 100 mA from the voltage source when the voltage divider output is not loaded (open-circuited). Find R_{1} and R_{2} give Vs $=12 \mathrm{~V}$.

Answer: $\mathrm{R}_{1}=$ \qquad $\mathrm{R}_{2}=$ \qquad

[5] b. Find the Thevenin equivalent circuit at terminals a, b for the circuit of Part a. Make your method clear. Give both the values and units in your answer.

Answer: Vth = \qquad $\mathrm{R}_{\mathrm{th}}=$ \qquad

Note: Answers from here on may cause the maximum current limit to be exceeded.
[4] c. If we connect a variable resistive load across terminals a, b, what is the maximum current we could draw through the load?

Answer: Maximum current = \qquad
[4] d. What load resistance would produce the maximum power transfer from the voltage divider, and what is the value of that power?

Answer: Load Resistance = \qquad Max. Power $=$ \qquad
[4] e. Thought question: If we had a 100Ω load resistor R_{L} connected to the output of a Thevenin equivalent circuit having a fixed $V_{t h}=2 \mathrm{~V}$ and a variable R_{th}, what value of R_{th} would produce maximum power dissipation in R_{L} ?

Answer: $\mathrm{R}_{\mathrm{th}}=$ \qquad Maximum possible power dissipation in load $=$ \qquad

Problem 4 Nodal Analysis [14]

[9] a. For the circuit below write a set of three nodal equations. (Apply KCL at nodes A, B, and C , and use $\mathrm{i}_{\mathrm{C}}=\mathrm{Cdv}_{\mathrm{C}} / \mathrm{dt}$ for the capacitor.) DO NOT SOLVE ANY EQUATIONS.

Answer: Node A:

Answer: Node B:

Answer: Node C:

[5] b. A "supernode" is shown by the oval in the circuit below. Write the nodal equation that applies at the "supernode". DO NOT SOLVE THE CIRCUIT EQUATIONS.

Problem 5 Power [12]

Find the power that is either dissipated in or delivered by the current source I0 in the circuit below, and determine whether the power is dissipated or delivered. Make your methods clear to the grader. Given $\mathrm{V}_{0}=5 \mathrm{~V} ; \mathrm{I}_{0}=2 \mathrm{~mA} ; \mathrm{R}_{1}=1 \mathrm{k} \Omega ; \mathrm{R}_{2}=2 \mathrm{k} \Omega$.

Answer: Power dissipated/delivered (circle one) is \qquad (value) \qquad (unit)

Problem 6 Circuit Fragment [5]

A resistor in a portion of a very large circuit is shown. Find the current I_{R} given $R_{7}=100$ $\mathrm{k} \Omega ; \mathrm{V}_{3}=2 \mathrm{~V} ; \mathrm{I}_{0}=5 \mathrm{~mA} ; \mathrm{I}_{1}=-15 \mathrm{~mA} ; \mathrm{I}_{3}=25 \mathrm{~mA} ; \mathrm{I}_{5}=40 \mathrm{~mA}$.

Answer: $\mathrm{I}_{\mathrm{R}}=$ \qquad

Problem 7 Superposition and Dependent Sources [20]

Analyze the circuit below to find $\mathrm{V}_{\text {out }}$ using the principle of superposition as follows:
[6] a. Draw each of the circuits whose solutions you will superpose to find $\mathrm{V}_{\text {out }}$.
[6] b. Solve for $\mathrm{V}_{\text {out }}$ for each of those circuits.
Answer: $\mathrm{V}_{\text {out }}=$ \qquad
Answer: $\mathrm{V}_{\mathrm{out} 2}=$ \qquad
Answer: $\mathrm{V}_{\text {out }}=$ \qquad
[6] c. Put it all together to find the actual $\mathrm{V}_{\text {out }}$.
Answer: $\mathrm{V}_{\text {out }}=$ \qquad
[2] d. What are the units of the constant g ?
Answer: \qquad

Problem 8 Mesh Analysis [10]

Find I_{R} using the mesh current method. Make your choices of mesh currents and your analysis clear to the grader.

Answer: $\mathrm{I}_{\mathrm{R}}=$ \qquad (value) \qquad (unit)

THE END

