University of California College of Engineering Department of Electrical Engineering and Computer Sciences

EECS 40

Introduction to Microelectronic Circuits

FINAL EXAMINATION

December 10, 2003

Time allotted: 2 hours 50 minutes (170 minutes)

Name:		,	
(print)	Last	First	
Signature:		STUDENT ID#:	

- **1.** This is a **CLOSED BOOK** exam. However, you may use 3 sheets of notes and a calculator.
- 2. SHOW YOUR WORK or REASONING on this exam. (Make your methods clear to the grade.)
- 3. Write your answers clearly (legibly) in the spaces (lines, boxes, or plots) provided.
- 4. Remember to specify the units on answers whenever appropriate.

Fall 2003 Prof. King

SCORE: 1 /20

Problem 1: Circuit Analysis and Equivalent Circuits [20 points in total]

a) Consider the following circuit:

i) Use a source transformation in order to fund i_x . [6 pts]

i_x =

ii) What is the power developed/absorbed by the 5mA current source? [3 pts]

Power =

[developed/absorbed] (circle the correct choice)

<u>Problem 1</u> (continued)

b) Consider the following circuit:

i) Find V_{out}. [6 pts]

V_{out} =

ii) Draw the Thevenin Equivalent circuit [5 pts]

Problem 2: Op Amp Circuit [20 points in total]

a) The following is the circuit model for an op amp circuit operating in its linear region:

Typically, R_{in} is very large (~1-M Ω), A is very large (>10⁴), and R_{out} is very small (<100 Ω).

What type of feedback is used in an op amp circuit, in order to ensure that the op amp will operate in its linear region? Illustrate (with a simple diagram) how this is achieved. **[5pts]**

<u>Problem 2</u> (continued)

b) Consider the following op amp circuit below. You can assume that the op amp is ideal.

i) Find an expression for V_o, using superposition. [10pts]

ii) Suppose V_A is fixed at 1 Volt. Plot V_0 vs V_B [5 pts]

Problem 3: First –Order Circuits [20 points in total]

In the circuit below, the switch is open for all t<0. The switch is closed at t = 0, and then it is open again at t = 10ms.

i) Write an equation for $v_c(t)$, for $0 \le t \le 10$ ms. [8 pts]

 $0 \leq t \leq 10$ ms: v_c(t) =

ii) Write an equation for v_c(t), for t>10ms. [8pts]

0

10

20

30

40

Problem 4: pn junctions; diode [20 points in total]

a) Consider a pn junction formed in the surface of an n-type silicon wafer maintained at T = 300K. The p and n regions are uniformly doped, as indicated in the figure below:

In the p-type region, the electron mobility is $100 \text{ cm}^2/\text{V}$ s and the hole mobility = $50 \text{ cm}^2/\text{V}$ s

i) <u>Estimate</u> the sheet resistance of the p-type region [6 pts] (Use the following values of constants: $q = 1.6 \times 10^{-19}$ C, $n_i = 10^{10}$ cm⁻³)

Sheet resistance =

ii) Suppose the p-type region values serves as the drain region of a p-channel MOSFET in a CMOS inverter, and that the n-type substrate is therefore biased at the power-supply voltage V_{DD}. How will the pn-junction capacitance change as PMOSFET is turned on (so that the drain bias is changed from 0V to V_{DD})? Explain briefly. [4 pts]

<u>Problem 4</u> (continued)

b) Consider the diode circuit below. Assume the diode is a perfect rectifier.

i) Plot v_{out} vs. v_{in} [5 pts]

iii) Sketch v_{out} for the given $v_{in(t)}$, using the same axes. [5pts]

Problem 5: MOSFET [20 points in total]

- a) Consider an NMOSFFET with parameters W = 1 μ m, L = 0.1 μ m, k_n' = 10⁻³A/V², V_T = 0.5V, biased at V_{GS} = V_{DD} = 1V. The areal gate capacitance C_{OX} = 3×10⁻⁶F/cm².
- i) Accurately sketch the I_D vs. V_{DS} characteristic in the range $0 \le V_{DS} \le 1V$, <u>neglecting velocity</u> <u>saturation</u> and channel-length modulation. Indicate the numerical values for the saturation voltage (V_{DSAT}) and current (I_{DSAT}). [6 pts]

ii) <u>Estimate</u> the effective resistance of this MOSFET (for digital circuit applications).(Again, assume that velocity saturation and channel-length modulation can be neglected.[3 pts]

ii) On the same plot in part (i) above, accurately sketch and label the I_D vs. V_{DS} characteristic, taking into account that the electron velocity in the MOSFET channel saturates at 10^7 cm/s. [5 pts]

<u>Problem 5</u> (continued)

b) High drive current (I_{DSAT}) is desirable for reduced equivalent resistance, to achieve smaller propagation delay to allow higher-speed circuit operation. Indicate in the table below how you would adjust various MOSFET parameters so as to increase I_{DSAT} . Briefly describe the tradeoff or disadvantage involved, if any, for each. (For example, the answer for gate length L is given.) [6 pts]

MOSFET	To increase I _{DSAT} ,	
Parameter	parameter must be	Associated tradeoff or disadvantage
Gate length L	decreased	Subthreshold leakage current increases, so that static power dissipation increases
Threshold voltage V_T		
Channel width W		

Problem 6: Logic Circuits [20 points in total]

a) Given the following truth table for the logic function **F**:

А	В	F
0	0	1
0	1	0
1	0	1
1	1	1

i) Write a simple logic expression for **F**. **[2 pts]**

F =_____

iii) Implement the function **F**, using only 2-input NAND gates. [5 pts]

Logic circuit for F:

Problem 6 (continued)

b) Consider the S-R flip-flop circuit below:

The output C is initially equal to 0, and the output D is initially equal to 1.

For the given **S** and **R** timing diagrams below, draw the timing diagrams (for t>0) for **A**, **B**, **C**, and **D** on the plots provided. **[13 pts]**

Problem 7: CMOS Technology [20 points in total] The layout of a CMOS logic gate is shown below:

The following fabrication process (starting with a p-type Si wafer) is used:

- 1. Thermally grow 700 nm of SiO₂.
- 2. Pattern the SiO_2 using the n-well mask.
- 3. Implant phosphorous and perform a high-temperature, long anneal to "drive in" the well to a depth of 1 μ m.
- 4. Remove the SiO_2 (using a highly selective wet etch process which does not etch Si).
- 5. Grow 0.5 μ m of SiO₂ ("field oxide").
- 6. Pattern the SiO_2 using the oxide mask.
- 7. Thermally grow 10 nm of SiO_2 ("gate oxide") in the bare regions of the Si.
- 8. Deposit 200nm of poly-Si (by CVD).
- 9. Pattern the poly-Si using the gate mask.
- 10. Use clear-field select mask to pattern photoresist; implant phosphorus. This will form the n+ source and drain junctions for the n-channel MOSDETs.
- 11. Use dark-field select mask to pattern photoresist; implant boron. This will form the p+ source and drain junctions for the p-channel MOSFETs.
- 12. Thermally anneal the wafer in order to activate the implanted dopants. The final source/drain junction depth is 100nm.
- 13. Deposit 0.5 µm of SiO₂ ("passivation oxide").
- 14. Pattern the deposited SiO₂ using the contact mask.
- 15. Deposit 0.5 μm of aluminum.
- 16. Pattern the aluminum using the metal mask.

<u>Problem 7</u> (continued)

a) Draw cross-section A-A' in the space provided. Identify all layers clearly. [10 pts]

Cross-section A-A'

b) Draw the circuit schematic, labeling V_{DD}, GND, V_A, V_B, and OUT. [5 pts]

Circuit Schematic

c) Assuming that k_n' = 3k_p', would you expect this logic gate to have comparable worst-case "pull-up" and "pull-down" propagation delays? (Is t_{pLH} ≅ t_{pHL}?) Justify your answer. [5 pts]

Problem 8: Technology Scaling (Short-Answer Questions) [10 points in total]

a) Explain how transistor scaling improves both the cost (per function) and performance (circuit operating speed) of CMOS integrated circuits. [5 pts]

b) Explain why interconnect delay is becoming more of a concern as CMOS technology advances. **[5 pts]**