Name:

Lab T A: Dan
 Bart
 Nir
 Konrad
 Yu Ching
 \qquad

EE 40

Midterm 2

October 17, 2002

PLEASE WRITE YOUR NAME ON EACH ATTACHED PAGE

PLEASE SHOW YOUR WORK TO RECEIVE PARTIAL CREDIT

Problem 1: 10 Points Possible

Problem 2: 5 Points Possible

Problem 3: 15 Points Possible

Problem 4: 10 Points Possible

Problem 5: 10 Points Possible

Problem 6: 15 Points Possible

Problem 7: 15 Points Possible \qquad

Problem 8: 5 Points Possible

Problem 9: 15 Points Possible

Problem 10: 10 Points Possible \qquad TOTAL: 110 Points Possible \qquad

Problem 1: 10 Points Possible
Perform nodal analysis on the circuit below. This means write a KCL equation for each node with unknown voltage. DO NOT SIMPLIFY the circuit. DO NOT SOLVE the KCL equations

Problem 2: 5 Points Possible
In nodal analysis, when is a supernode needed? Why is a supernode needed?

Problem 3: 15 Points Possible
Revisiting the circuit from Problem 1,

a) Find the Thevenin equivalent voltage V_{T} with respect to a and b . Express V_{T} in terms of node voltages. (5 Points Possible)
b) Find the Thevenin equivalent resistance R_{T}. DO NOT INCLUDE II symbol in final answer; write full mathematical expression. (10 Points Possible)

Name:

Problem 4: 10 Points Possible
Suppose I have a black-box circuit (I can't see exactly what's inside) but I know it only contains resistors and linear dependent sources. The controlling voltages and currents for the dependent sources are also in the box.

I perform one experiment: When I attach a 5 V battery as shown, I measure a 200 mA current in the direction shown. The internal resistance of the battery is 4Ω and the internal resistance of the DMM is 1Ω.

Can I find the Thevenin equivalent of the black-box circuit with this information? If yes, find the Thevenin equivalent. If no, explain why not.

Problem 5: 10 Points Possible
Find the Thevenin and Norton equivalents (if possible) for the following circuits: (3 Points Possible for each Thevenin, 2 points Possible for each Norton)

Problem 6: 15 Points Possible
For the ideal operational amplifier circuit below, find V_{0} in terms of V_{1} and $V_{2 \text {. Assume }}$ that the operational amplifier is operating linearly (ignore the rails).

Problem 7: 15 Points Possible
Design an operational amplifier circuit that has an output voltage $V_{0}=3 V_{2}-5 V_{1}$. The input voltage sources V_{1} and V_{2} cannot be detached from ground, and each have their negative terminals at ground. Assume that your amplifier is operating linearly.

You will lose 5 points if you use more than one differential amplifier. If you are desperate, the instructor will "sell" you a hint for points.

Problem 8: 5 Points Possible
Suppose that we want to "clean up" a logic signal by transforming input voltages over 2.5 V (the threshold voltage) to 5 V (logic 1) as output and voltages under 2.5 V to logic 0 . Design a differential amplifier circuit that will perform this function. You many use one ideal differential amplifier; $\mathrm{R}_{\mathrm{i}}=\infty, \mathrm{R}_{0}=0 \Omega$ and gain $\mathrm{A}=\infty$. You must specify the rail voltages for this amplifier.

Problem 9: 15 Points Possible
Now suppose that your differential amplifier circuit from Problem 8 has a finite gain $\mathrm{A}=$ 10,000 . For the input $v_{i}(t)$ defined below, determine the propagation delay t_{p}, where $\mathrm{t}_{\mathrm{p}}=$ time output reaches 50% of final value - time circuit reaches 50% of final value.
$\mathrm{V}_{\mathrm{i}}(\mathrm{t})=\left\{\begin{array}{llc}0 & \text { for } & t<0 \\ t & \text { for } & 0 \leq t \leq 5 \\ 5 & \text { for } & t>5\end{array} \quad \mathrm{t}\right.$ in seconds, v_{i} in volts

Problem 10: 10 Points Possible
Find the time constant for the RC circuit below. DO NOT INCLUDE II symbol in final answer; write the full mathematical expression.

