EECS 40 - MIDTERM \#1

2 October 2000

Name: \qquad Last, First

Signature:

\qquad

Student ID:

\qquad

TA: Ben \square Warren
Naratip

Guidelines:

1. Closed book and notes except 1 page of formulas.
2. You may use a calculator.
3. Do not unstaple the exam.
4. Show all your work and reasoning on the exam in order to receive full or partial credit.
5. This exam contains 8 problems and corresponding worksheets plus the cover page.

Problem	Points Possible	Your Score
1	15	
2	15	
3	12	
4	10	
5	15	
6	10	
7	11	
8	12	
Total	$\mathbf{1 0 0}$	

$$
\begin{aligned}
\mathrm{f} & =10^{-15} \\
\mathrm{p} & =10^{-12} \\
\mathrm{n} & =10^{-9} \\
\mu & =10^{-6} \\
\mathrm{~m} & =10^{-3} \\
\mathrm{~K} & =10^{3} \\
\mathrm{M} & =10^{6}
\end{aligned}
$$

Problem 1 (15 points)

What is the value of the unknown node voltage in each of the following circuits? Assume diodes are perfect rectifiers.
(a)

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{x}	\mathbf{y}	\mathbf{R}

(b)

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{z}	\mathbf{T}

(c) Is $\mathrm{R}=\mathrm{T}$ for all possible inputs?
(WARNING: You must fill out truth tables in this problem to receive credit.)

Prob. 1 Worksheet

Problem 2 (15 points)

(a) Find V_{y}.

$$
\mathrm{V}_{\mathrm{y}}=
$$

(b) Find V_{x}.

$$
\mathrm{V}_{\mathrm{x}}=
$$

(c) Find power delivered by the voltage source.

$$
P_{3}=
$$

Prob. 2 Worksheet

Problem 3 (12 points)

For the circuit below:
(a) Identify known and unknown node voltages, and
(b) Write sufficient nodal equations to solve for the unknown node voltages (do not solve).

(a.1) known node voltages:
\qquad
(a.2) unknown node voltages:

Prob. 3 Worksheet

Problem 4 (10 points)

For the circuit below, using nodal analysis write sufficient equations to find V_{x} and V_{y}. Do not solve.

Equations:
\square
\square
\square

Prob. 4 Worksheet

Problem 5 (15 points)

For the circuit above, the capacitor is initially uncharged. The switch closes at $t=0$.
(a) Find V_{C} for $\mathrm{t}=0^{+}$and $\mathrm{t} \rightarrow \infty$.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}\left(\mathrm{t}=0^{+}\right)= \\
& \mathrm{V}_{\mathrm{C}}(\mathrm{t} \rightarrow \infty)=
\end{aligned}
$$

(b) Sketch (very neatly and accurately!) V_{C} vs. t on the graph below. You must label the axes.

(c) Write an equation for $\mathrm{V}_{\mathrm{C}}(\mathrm{t})$.

$$
\mathrm{V}_{\mathrm{C}}(\mathrm{t})=
$$

Prob. 5 Worksheet

Problem 6 (10 points)

In the lab on RC circuits, you measure the pulse response of the circuit below.

You know R is $2 \mathrm{~K} \Omega$. What is the value of C ?
$\mathrm{C}=$ \qquad

Prob. 6 Worksheet

Problem 7 (11 points)

You measure the I-V graph of a circuit in a "black box" in the lab.

What is a possible circuit that is in the box? Draw here \downarrow.
\square

Prob. 7 Worksheet

Problem 8 (12 points)

In this experiment you "peek," i.e., you open the box before testing it. You see the following circuit:

What will be the I-V graph you will measure for this circuit? (You must label axes for credit.)

Prob. 8 Worksheet

