UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Professor Oldham

Fall 2000

## EECS 40 — MIDTERM #1

2 October 2000

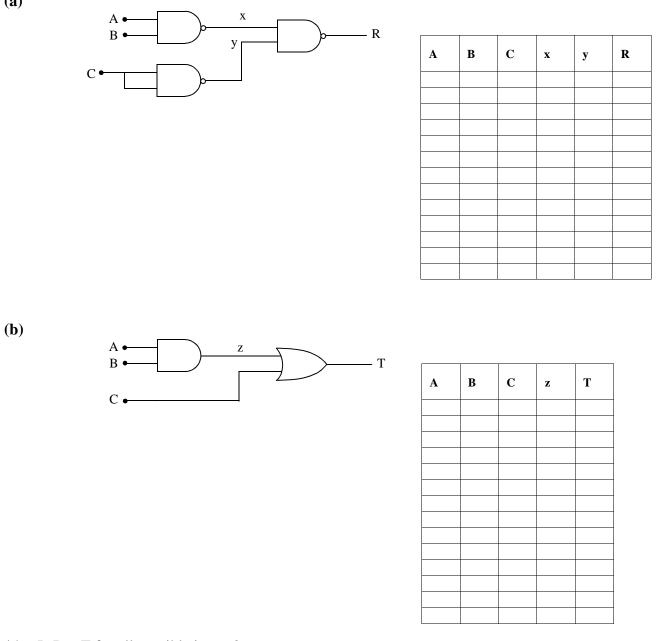
Signature: \_\_\_\_\_

TA: □ Ben □ Warren □ Naratip

Student ID: \_\_\_\_\_

#### **Guidelines:**

- 1. Closed book and notes except 1 page of formulas.
- 2. You may use a calculator.
- **3.** Do not unstaple the exam.
- 4. Show all your work and reasoning on the exam in order to receive full or partial credit.
- 5. This exam contains 8 problems and corresponding worksheets plus the cover page.


| Problem | Points<br>Possible | Your<br>Score |
|---------|--------------------|---------------|
| 1       | 15                 |               |
| 2       | 15                 |               |
| 3       | 12                 |               |
| 4       | 10                 |               |
| 5       | 15                 |               |
| 6       | 10                 |               |
| 7       | 11                 |               |
| 8       | 12                 |               |
| Total   | 100                |               |

 $f = 10^{-15}$   $p = 10^{-12}$   $n = 10^{-9}$   $\mu = 10^{-6}$   $m = 10^{-3}$   $K = 10^{3}$  $M = 10^{6}$ 

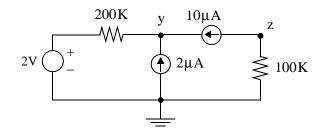
## Problem 1 (15 points)

What is the value of the unknown node voltage in each of the following circuits? Assume diodes are perfect rectifiers.

**(a)** 

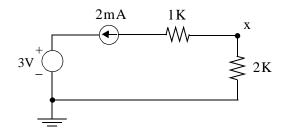


(c) Is R = T for all possible inputs?

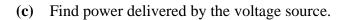

YES

NO

(WARNING: You must fill out truth tables in this problem to receive credit.)


Prob. 1 Worksheet

### Problem 2 (15 points)




(a) Find  $V_y$ .

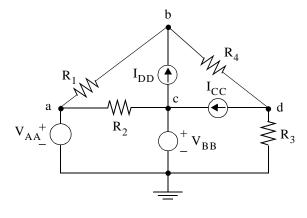




(**b**) Find  $V_x$ .



V<sub>x</sub> =




Prob. 2 Worksheet

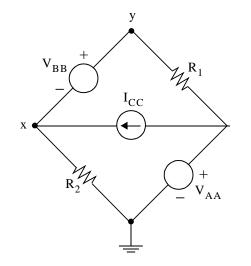
### Problem 3 (12 points)

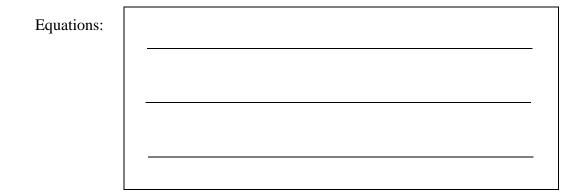
For the circuit below:

- (a) Identify known and unknown node voltages, and
- (b) Write sufficient nodal equations to solve for the unknown node voltages (do not solve).

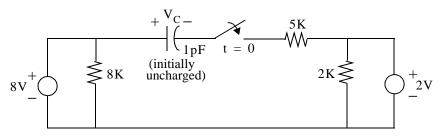


(a.1) known node voltages:


(a.2) unknown node voltages:


| Nodal Equations: |  |  |
|------------------|--|--|
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |

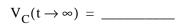
Prob. 3 Worksheet


### Problem 4 (10 points)

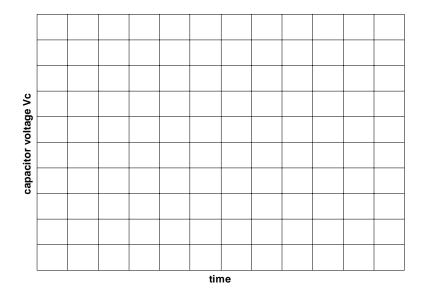
For the circuit below, using nodal analysis write sufficient equations to find  $V_x$  and  $V_y$ . Do not solve.






Prob. 4 Worksheet




For the circuit above, the capacitor is initially uncharged. The switch closes at t = 0.

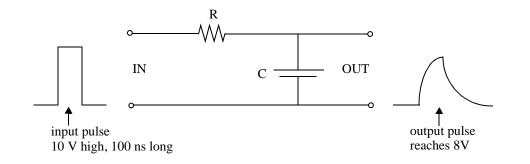
(a) Find  $V_C$  for  $t = 0^+$  and  $t \to \infty$ .

 $V_{C}(t = 0^{+}) =$  \_\_\_\_\_

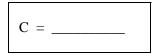


(b) Sketch (very neatly and accurately!)  $V_C$  vs. t on the graph below. You <u>must</u> label the axes.




(c) Write an equation for  $V_C(t)$ .

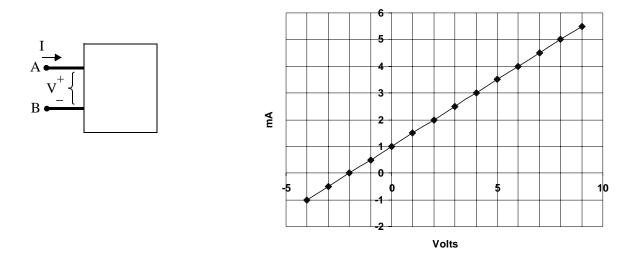
$$V_{C}(t) =$$


Prob. 5 Worksheet

#### Problem 6 (10 points)

In the lab on RC circuits, you measure the pulse response of the circuit below.




You know R is  $2K\Omega$ . What is the value of C?



Prob. 6 Worksheet

# Problem 7 (11 points)

You measure the I-V graph of a circuit in a "black box" in the lab.



What is a possible circuit that is in the box? Draw here  $\downarrow$ .




Prob. 7 Worksheet

### Problem 8 (12 points)

In this experiment you "peek," i.e., you open the box before testing it. You see the following circuit:



What will be the I-V graph you will measure for this circuit? (You must label axes for credit.)



Prob. 8 Worksheet